Cargando…
Appropriate Delivery of the CRISPR/Cas9 System through the Nonlysosomal Route: Application for Therapeutic Gene Editing
The development of gene delivery has attracted increasing attention, especially when the introduction and application of the CRISPR/Cas9 gene editing system appears promising for gene therapy. However, ensuring biosafety and high gene editing efficiency at the same time poses a great challenge for i...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375254/ https://www.ncbi.nlm.nih.gov/pubmed/32714743 http://dx.doi.org/10.1002/advs.201903381 |
_version_ | 1783561845586526208 |
---|---|
author | Yin, Hang Yuan, Xiaoling Luo, Lihua Lu, Yichao Qin, Bing Zhang, Junlei Shi, Yingying Zhu, Chunqi Yang, Jie Li, Xiang Jiang, Mengshi Luo, Zhenyu Shan, Xinyu Chen, Dawei You, Jian |
author_facet | Yin, Hang Yuan, Xiaoling Luo, Lihua Lu, Yichao Qin, Bing Zhang, Junlei Shi, Yingying Zhu, Chunqi Yang, Jie Li, Xiang Jiang, Mengshi Luo, Zhenyu Shan, Xinyu Chen, Dawei You, Jian |
author_sort | Yin, Hang |
collection | PubMed |
description | The development of gene delivery has attracted increasing attention, especially when the introduction and application of the CRISPR/Cas9 gene editing system appears promising for gene therapy. However, ensuring biosafety and high gene editing efficiency at the same time poses a great challenge for its in vivo applications. Herein, a pardaxin peptide (PAR)‐modified cationic liposome (PAR‐Lipo) is developed. The results are indicative that significantly enhanced gene editing efficiency can be obtained through the mediation of PAR‐Lipos compared to non‐Lipos (non‐PAR‐modified liposomes) and Lipofectamine 2000, owing to its protection toward carried nucleotide by the prevention of lysosomal capture, prolongation of retention time in cells through the accumulation in the endoplasmic reticulum (ER), and more importantly, facilitation of the nuclear access via an ER‐nucleus route. Accumulation of PAR‐Lipos in the ER may improve the binding of Cas9 and sgRNA, thus further contributing to the eventually enhanced gene editing efficiency. Given their high biosafety, PAR‐Lipos are used to mediate the knockout of the oncogene CDC6 in vivo, which results in significant tumor growth inhibition. This work may provide a useful reference for enhancing the delivery of gene editing systems, thus improving the potential for their future clinical applications. |
format | Online Article Text |
id | pubmed-7375254 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73752542020-07-23 Appropriate Delivery of the CRISPR/Cas9 System through the Nonlysosomal Route: Application for Therapeutic Gene Editing Yin, Hang Yuan, Xiaoling Luo, Lihua Lu, Yichao Qin, Bing Zhang, Junlei Shi, Yingying Zhu, Chunqi Yang, Jie Li, Xiang Jiang, Mengshi Luo, Zhenyu Shan, Xinyu Chen, Dawei You, Jian Adv Sci (Weinh) Communications The development of gene delivery has attracted increasing attention, especially when the introduction and application of the CRISPR/Cas9 gene editing system appears promising for gene therapy. However, ensuring biosafety and high gene editing efficiency at the same time poses a great challenge for its in vivo applications. Herein, a pardaxin peptide (PAR)‐modified cationic liposome (PAR‐Lipo) is developed. The results are indicative that significantly enhanced gene editing efficiency can be obtained through the mediation of PAR‐Lipos compared to non‐Lipos (non‐PAR‐modified liposomes) and Lipofectamine 2000, owing to its protection toward carried nucleotide by the prevention of lysosomal capture, prolongation of retention time in cells through the accumulation in the endoplasmic reticulum (ER), and more importantly, facilitation of the nuclear access via an ER‐nucleus route. Accumulation of PAR‐Lipos in the ER may improve the binding of Cas9 and sgRNA, thus further contributing to the eventually enhanced gene editing efficiency. Given their high biosafety, PAR‐Lipos are used to mediate the knockout of the oncogene CDC6 in vivo, which results in significant tumor growth inhibition. This work may provide a useful reference for enhancing the delivery of gene editing systems, thus improving the potential for their future clinical applications. John Wiley and Sons Inc. 2020-06-13 /pmc/articles/PMC7375254/ /pubmed/32714743 http://dx.doi.org/10.1002/advs.201903381 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Yin, Hang Yuan, Xiaoling Luo, Lihua Lu, Yichao Qin, Bing Zhang, Junlei Shi, Yingying Zhu, Chunqi Yang, Jie Li, Xiang Jiang, Mengshi Luo, Zhenyu Shan, Xinyu Chen, Dawei You, Jian Appropriate Delivery of the CRISPR/Cas9 System through the Nonlysosomal Route: Application for Therapeutic Gene Editing |
title | Appropriate Delivery of the CRISPR/Cas9 System through the Nonlysosomal Route: Application for Therapeutic Gene Editing |
title_full | Appropriate Delivery of the CRISPR/Cas9 System through the Nonlysosomal Route: Application for Therapeutic Gene Editing |
title_fullStr | Appropriate Delivery of the CRISPR/Cas9 System through the Nonlysosomal Route: Application for Therapeutic Gene Editing |
title_full_unstemmed | Appropriate Delivery of the CRISPR/Cas9 System through the Nonlysosomal Route: Application for Therapeutic Gene Editing |
title_short | Appropriate Delivery of the CRISPR/Cas9 System through the Nonlysosomal Route: Application for Therapeutic Gene Editing |
title_sort | appropriate delivery of the crispr/cas9 system through the nonlysosomal route: application for therapeutic gene editing |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375254/ https://www.ncbi.nlm.nih.gov/pubmed/32714743 http://dx.doi.org/10.1002/advs.201903381 |
work_keys_str_mv | AT yinhang appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT yuanxiaoling appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT luolihua appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT luyichao appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT qinbing appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT zhangjunlei appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT shiyingying appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT zhuchunqi appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT yangjie appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT lixiang appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT jiangmengshi appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT luozhenyu appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT shanxinyu appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT chendawei appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting AT youjian appropriatedeliveryofthecrisprcas9systemthroughthenonlysosomalrouteapplicationfortherapeuticgeneediting |