Cargando…

Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease

Precision medicine for Alzheimer's disease (AD) necessitates the development of personalized, reproducible, and neuroscientifically interpretable biomarkers, yet despite remarkable advances, few such biomarkers are available. Also, a comprehensive evaluation of the neurobiological basis and gen...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Dan, Zhou, Bo, Han, Ying, Ren, Jiaji, Han, Tong, Liu, Bing, Lu, Jie, Song, Chengyuan, Wang, Pan, Wang, Dawei, Xu, Jian, Yang, Zhengyi, Yao, Hongxiang, Yu, Chunshui, Zhao, Kun, Wintermark, Max, Zuo, Nianming, Zhang, Xinqing, Zhou, Yuying, Zhang, Xi, Jiang, Tianzi, Wang, Qing, Liu, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375255/
https://www.ncbi.nlm.nih.gov/pubmed/32714766
http://dx.doi.org/10.1002/advs.202000675
_version_ 1783561845837135872
author Jin, Dan
Zhou, Bo
Han, Ying
Ren, Jiaji
Han, Tong
Liu, Bing
Lu, Jie
Song, Chengyuan
Wang, Pan
Wang, Dawei
Xu, Jian
Yang, Zhengyi
Yao, Hongxiang
Yu, Chunshui
Zhao, Kun
Wintermark, Max
Zuo, Nianming
Zhang, Xinqing
Zhou, Yuying
Zhang, Xi
Jiang, Tianzi
Wang, Qing
Liu, Yong
author_facet Jin, Dan
Zhou, Bo
Han, Ying
Ren, Jiaji
Han, Tong
Liu, Bing
Lu, Jie
Song, Chengyuan
Wang, Pan
Wang, Dawei
Xu, Jian
Yang, Zhengyi
Yao, Hongxiang
Yu, Chunshui
Zhao, Kun
Wintermark, Max
Zuo, Nianming
Zhang, Xinqing
Zhou, Yuying
Zhang, Xi
Jiang, Tianzi
Wang, Qing
Liu, Yong
author_sort Jin, Dan
collection PubMed
description Precision medicine for Alzheimer's disease (AD) necessitates the development of personalized, reproducible, and neuroscientifically interpretable biomarkers, yet despite remarkable advances, few such biomarkers are available. Also, a comprehensive evaluation of the neurobiological basis and generalizability of the end‐to‐end machine learning system should be given the highest priority. For this reason, a deep learning model (3D attention network, 3DAN) that can simultaneously capture candidate imaging biomarkers with an attention mechanism module and advance the diagnosis of AD based on structural magnetic resonance imaging is proposed. The generalizability and reproducibility are evaluated using cross‐validation on in‐house, multicenter (n = 716), and public (n = 1116) databases with an accuracy up to 92%. Significant associations between the classification output and clinical characteristics of AD and mild cognitive impairment (MCI, a middle stage of dementia) groups provide solid neurobiological support for the 3DAN model. The effectiveness of the 3DAN model is further validated by its good performance in predicting the MCI subjects who progress to AD with an accuracy of 72%. Collectively, the findings highlight the potential for structural brain imaging to provide a generalizable, and neuroscientifically interpretable imaging biomarker that can support clinicians in the early diagnosis of AD.
format Online
Article
Text
id pubmed-7375255
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-73752552020-07-23 Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease Jin, Dan Zhou, Bo Han, Ying Ren, Jiaji Han, Tong Liu, Bing Lu, Jie Song, Chengyuan Wang, Pan Wang, Dawei Xu, Jian Yang, Zhengyi Yao, Hongxiang Yu, Chunshui Zhao, Kun Wintermark, Max Zuo, Nianming Zhang, Xinqing Zhou, Yuying Zhang, Xi Jiang, Tianzi Wang, Qing Liu, Yong Adv Sci (Weinh) Full Papers Precision medicine for Alzheimer's disease (AD) necessitates the development of personalized, reproducible, and neuroscientifically interpretable biomarkers, yet despite remarkable advances, few such biomarkers are available. Also, a comprehensive evaluation of the neurobiological basis and generalizability of the end‐to‐end machine learning system should be given the highest priority. For this reason, a deep learning model (3D attention network, 3DAN) that can simultaneously capture candidate imaging biomarkers with an attention mechanism module and advance the diagnosis of AD based on structural magnetic resonance imaging is proposed. The generalizability and reproducibility are evaluated using cross‐validation on in‐house, multicenter (n = 716), and public (n = 1116) databases with an accuracy up to 92%. Significant associations between the classification output and clinical characteristics of AD and mild cognitive impairment (MCI, a middle stage of dementia) groups provide solid neurobiological support for the 3DAN model. The effectiveness of the 3DAN model is further validated by its good performance in predicting the MCI subjects who progress to AD with an accuracy of 72%. Collectively, the findings highlight the potential for structural brain imaging to provide a generalizable, and neuroscientifically interpretable imaging biomarker that can support clinicians in the early diagnosis of AD. John Wiley and Sons Inc. 2020-06-09 /pmc/articles/PMC7375255/ /pubmed/32714766 http://dx.doi.org/10.1002/advs.202000675 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Jin, Dan
Zhou, Bo
Han, Ying
Ren, Jiaji
Han, Tong
Liu, Bing
Lu, Jie
Song, Chengyuan
Wang, Pan
Wang, Dawei
Xu, Jian
Yang, Zhengyi
Yao, Hongxiang
Yu, Chunshui
Zhao, Kun
Wintermark, Max
Zuo, Nianming
Zhang, Xinqing
Zhou, Yuying
Zhang, Xi
Jiang, Tianzi
Wang, Qing
Liu, Yong
Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease
title Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease
title_full Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease
title_fullStr Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease
title_full_unstemmed Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease
title_short Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease
title_sort generalizable, reproducible, and neuroscientifically interpretable imaging biomarkers for alzheimer's disease
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375255/
https://www.ncbi.nlm.nih.gov/pubmed/32714766
http://dx.doi.org/10.1002/advs.202000675
work_keys_str_mv AT jindan generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT zhoubo generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT hanying generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT renjiaji generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT hantong generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT liubing generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT lujie generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT songchengyuan generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT wangpan generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT wangdawei generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT xujian generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT yangzhengyi generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT yaohongxiang generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT yuchunshui generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT zhaokun generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT wintermarkmax generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT zuonianming generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT zhangxinqing generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT zhouyuying generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT zhangxi generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT jiangtianzi generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT wangqing generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease
AT liuyong generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease