Cargando…
Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease
Precision medicine for Alzheimer's disease (AD) necessitates the development of personalized, reproducible, and neuroscientifically interpretable biomarkers, yet despite remarkable advances, few such biomarkers are available. Also, a comprehensive evaluation of the neurobiological basis and gen...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375255/ https://www.ncbi.nlm.nih.gov/pubmed/32714766 http://dx.doi.org/10.1002/advs.202000675 |
_version_ | 1783561845837135872 |
---|---|
author | Jin, Dan Zhou, Bo Han, Ying Ren, Jiaji Han, Tong Liu, Bing Lu, Jie Song, Chengyuan Wang, Pan Wang, Dawei Xu, Jian Yang, Zhengyi Yao, Hongxiang Yu, Chunshui Zhao, Kun Wintermark, Max Zuo, Nianming Zhang, Xinqing Zhou, Yuying Zhang, Xi Jiang, Tianzi Wang, Qing Liu, Yong |
author_facet | Jin, Dan Zhou, Bo Han, Ying Ren, Jiaji Han, Tong Liu, Bing Lu, Jie Song, Chengyuan Wang, Pan Wang, Dawei Xu, Jian Yang, Zhengyi Yao, Hongxiang Yu, Chunshui Zhao, Kun Wintermark, Max Zuo, Nianming Zhang, Xinqing Zhou, Yuying Zhang, Xi Jiang, Tianzi Wang, Qing Liu, Yong |
author_sort | Jin, Dan |
collection | PubMed |
description | Precision medicine for Alzheimer's disease (AD) necessitates the development of personalized, reproducible, and neuroscientifically interpretable biomarkers, yet despite remarkable advances, few such biomarkers are available. Also, a comprehensive evaluation of the neurobiological basis and generalizability of the end‐to‐end machine learning system should be given the highest priority. For this reason, a deep learning model (3D attention network, 3DAN) that can simultaneously capture candidate imaging biomarkers with an attention mechanism module and advance the diagnosis of AD based on structural magnetic resonance imaging is proposed. The generalizability and reproducibility are evaluated using cross‐validation on in‐house, multicenter (n = 716), and public (n = 1116) databases with an accuracy up to 92%. Significant associations between the classification output and clinical characteristics of AD and mild cognitive impairment (MCI, a middle stage of dementia) groups provide solid neurobiological support for the 3DAN model. The effectiveness of the 3DAN model is further validated by its good performance in predicting the MCI subjects who progress to AD with an accuracy of 72%. Collectively, the findings highlight the potential for structural brain imaging to provide a generalizable, and neuroscientifically interpretable imaging biomarker that can support clinicians in the early diagnosis of AD. |
format | Online Article Text |
id | pubmed-7375255 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73752552020-07-23 Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease Jin, Dan Zhou, Bo Han, Ying Ren, Jiaji Han, Tong Liu, Bing Lu, Jie Song, Chengyuan Wang, Pan Wang, Dawei Xu, Jian Yang, Zhengyi Yao, Hongxiang Yu, Chunshui Zhao, Kun Wintermark, Max Zuo, Nianming Zhang, Xinqing Zhou, Yuying Zhang, Xi Jiang, Tianzi Wang, Qing Liu, Yong Adv Sci (Weinh) Full Papers Precision medicine for Alzheimer's disease (AD) necessitates the development of personalized, reproducible, and neuroscientifically interpretable biomarkers, yet despite remarkable advances, few such biomarkers are available. Also, a comprehensive evaluation of the neurobiological basis and generalizability of the end‐to‐end machine learning system should be given the highest priority. For this reason, a deep learning model (3D attention network, 3DAN) that can simultaneously capture candidate imaging biomarkers with an attention mechanism module and advance the diagnosis of AD based on structural magnetic resonance imaging is proposed. The generalizability and reproducibility are evaluated using cross‐validation on in‐house, multicenter (n = 716), and public (n = 1116) databases with an accuracy up to 92%. Significant associations between the classification output and clinical characteristics of AD and mild cognitive impairment (MCI, a middle stage of dementia) groups provide solid neurobiological support for the 3DAN model. The effectiveness of the 3DAN model is further validated by its good performance in predicting the MCI subjects who progress to AD with an accuracy of 72%. Collectively, the findings highlight the potential for structural brain imaging to provide a generalizable, and neuroscientifically interpretable imaging biomarker that can support clinicians in the early diagnosis of AD. John Wiley and Sons Inc. 2020-06-09 /pmc/articles/PMC7375255/ /pubmed/32714766 http://dx.doi.org/10.1002/advs.202000675 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Jin, Dan Zhou, Bo Han, Ying Ren, Jiaji Han, Tong Liu, Bing Lu, Jie Song, Chengyuan Wang, Pan Wang, Dawei Xu, Jian Yang, Zhengyi Yao, Hongxiang Yu, Chunshui Zhao, Kun Wintermark, Max Zuo, Nianming Zhang, Xinqing Zhou, Yuying Zhang, Xi Jiang, Tianzi Wang, Qing Liu, Yong Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease |
title | Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease |
title_full | Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease |
title_fullStr | Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease |
title_full_unstemmed | Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease |
title_short | Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease |
title_sort | generalizable, reproducible, and neuroscientifically interpretable imaging biomarkers for alzheimer's disease |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375255/ https://www.ncbi.nlm.nih.gov/pubmed/32714766 http://dx.doi.org/10.1002/advs.202000675 |
work_keys_str_mv | AT jindan generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT zhoubo generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT hanying generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT renjiaji generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT hantong generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT liubing generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT lujie generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT songchengyuan generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT wangpan generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT wangdawei generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT xujian generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT yangzhengyi generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT yaohongxiang generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT yuchunshui generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT zhaokun generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT wintermarkmax generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT zuonianming generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT zhangxinqing generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT zhouyuying generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT zhangxi generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT jiangtianzi generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT wangqing generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease AT liuyong generalizablereproducibleandneuroscientificallyinterpretableimagingbiomarkersforalzheimersdisease |