Cargando…

Clinical Anatomy of the Extradural Neural Axis Compartment: A Literature Review

OBJECTIVE: The extradural neural axis compartment (EDNAC) is an adipovenous zone located between the meningeal and endosteal layers of the dura and has been minimally investigated. It runs along the neuraxis from the orbits down to the coccyx and contains fat, valveless veins, arteries, and nerves....

Descripción completa

Detalles Bibliográficos
Autores principales: Bond, Jacob D., Zhang, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375305/
https://www.ncbi.nlm.nih.gov/pubmed/32711147
http://dx.doi.org/10.1016/j.wneu.2020.07.095
Descripción
Sumario:OBJECTIVE: The extradural neural axis compartment (EDNAC) is an adipovenous zone located between the meningeal and endosteal layers of the dura and has been minimally investigated. It runs along the neuraxis from the orbits down to the coccyx and contains fat, valveless veins, arteries, and nerves. In the present review, we have outlined the current knowledge regarding the structural and functional significance of the EDNAC. METHODS: We performed a narrative review of the reported EDNAC data. RESULTS: The EDNAC can be organized into 4 regional enlargements along its length: the orbital, lateral sellar, clival, and spinal segments, with a lateral sellar orbital junction linking the orbital and lateral sellar segments. The orbital EDNAC facilitates the movement of the eyeball and elsewhere allows limited motility for the meningeal dura. The major nerves and vessels are cushioned and supported by the EDNAC. Increased intra-abdominal pressure will also be conveyed along the spinal EDNAC, causing increased venous pressure in the spine and cranium. From a pathological perspective, the EDNAC functions as a low-resistance, extradural passageway that might facilitate tumor encroachment and expansion. CONCLUSIONS: Clinicians should be aware of the extent and significance of the EDNAC, which could affect skull base and spine surgery, and have an understanding of the tumor spread pathways and growth patterns. Comparatively little research has focused on the EDNAC since its initial description. Therefore, future investigations are required to provide more information on this underappreciated component of neuraxial anatomy.