Cargando…
The quantification of bisphenols and their analogues in wastewaters and surface water by an improved solid-phase extraction gas chromatography/mass spectrometry method
The study focused on the application of GC in the quantitative analysis of bisphenols and their analogues (12 analytes), and the improvement of solid-phase extraction for the whole water analysis of complex water samples. The role of silylation in the qualitative and quantitative analysis of bisphen...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375991/ https://www.ncbi.nlm.nih.gov/pubmed/32418090 http://dx.doi.org/10.1007/s11356-020-09123-2 |
Sumario: | The study focused on the application of GC in the quantitative analysis of bisphenols and their analogues (12 analytes), and the improvement of solid-phase extraction for the whole water analysis of complex water samples. The role of silylation in the qualitative and quantitative analysis of bisphenols was investigated. Partial degradation occurred for selected targets during hot injection with the presence of a silylation agent. A PSA (primary and secondary amines) sorbent placed on the top of the solid-phase extraction (SPE) column sorbent was found to be a matrix component trap, mostly for humic acids. The whole water analysis was performed by washing the filters with methanol and recycling the extract to the sample. The validation of SPE-GC/MS(SIM) gave limits of detection of 1–50 ng/L for ten target bisphenols with a method recovery of between 87 and 133%. The application of the method was tested by the analysis of wastewater sampled from three wastewater treatment plants located in Poland, and municipal surface waters. The only analytes found were BPA and BPS, within the range of 16–1465 ng/L and < MDL-1249 ng/L in wastewater, and 170–3113 ng/L and < MDL-1584 ng/L in surface water, respectively. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11356-020-09123-2) contains supplementary material, which is available to authorized users. |
---|