Cargando…

Mosquito proboscis-inspired needle insertion to reduce tissue deformation and organ displacement

This study investigates mosquito proboscis-inspired (MPI) insertion applied to the clinically used biopsy needle to reduce tissue deformation and organ displacement. Advanced medical imagining has enabled early-stage identification of cancerous lesions that require needle biopsy for minimally invasi...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Annie D. R., Putra, Ketut B., Chen, Lei, Montgomery, Jeffrey S., Shih, Albert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376018/
https://www.ncbi.nlm.nih.gov/pubmed/32699296
http://dx.doi.org/10.1038/s41598-020-68596-w
Descripción
Sumario:This study investigates mosquito proboscis-inspired (MPI) insertion applied to the clinically used biopsy needle to reduce tissue deformation and organ displacement. Advanced medical imagining has enabled early-stage identification of cancerous lesions that require needle biopsy for minimally invasive tissue sampling and pathological analysis. Accurate cancer diagnosis depends on the accuracy of needle deployment to the targeted cancerous lesion site. However, currently available needle delivery systems deform and move soft tissue and organs, leading to a non-diagnostic biopsy or undersampling of the target. Two features inspired by the mosquito proboscis were adopted for MPI insertion in prostate biopsy: (1) the harpoon-shape notches at the needle tip and (2) reciprocating needle-cannula motions for incremental insertion. The local tissue deformation and global prostate displacement during the MPI vs. traditional direct insertions were quantified by optically tracking the displacement of particle-embedded tissue-mimicking phantoms. Results show that the MPI needle insertion reduced both local tissue deformation and global prostate displacement because of the opposite needle-cannula motions and notches which stabilized and reduced the tissue deformation during insertion. Findings provide proof of concept for MPI insertion in the clinical biopsy procedures as well as insights of needle–tissue interaction for future biopsy technology development.