Cargando…
Annotation-free learning of plankton for classification and anomaly detection
The acquisition of increasingly large plankton digital image datasets requires automatic methods of recognition and classification. As data size and collection speed increases, manual annotation and database representation are often bottlenecks for utilization of machine learning algorithms for taxo...
Autores principales: | Pastore, Vito P., Zimmerman, Thomas G., Biswas, Sujoy K., Bianco, Simone |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376023/ https://www.ncbi.nlm.nih.gov/pubmed/32699302 http://dx.doi.org/10.1038/s41598-020-68662-3 |
Ejemplares similares
-
In-domain versus out-of-domain transfer learning in plankton image classification
por: Maracani, Andrea, et al.
Publicado: (2023) -
Plankton classification with high-throughput submersible holographic microscopy and transfer learning
por: MacNeil, Liam, et al.
Publicado: (2021) -
MorphoCluster: Efficient Annotation of Plankton Images by Clustering
por: Schröder, Simon-Martin, et al.
Publicado: (2020) -
Functional annotation and importance of marine bacterial transporters of plankton exometabolites
por: Schroer, William F., et al.
Publicado: (2023) -
Annotated Dataset for Anomaly Detection in a Data Center with IoT Sensors
por: Vigoya, Laura, et al.
Publicado: (2020)