Cargando…
Label-free detection of rare circulating tumor cells by image analysis and machine learning
Detection and characterization of rare circulating tumor cells (CTCs) in patients' blood is important for the diagnosis and monitoring of cancer. The traditional way of counting CTCs via fluorescent images requires a series of tedious experimental procedures and often impacts the viability of c...
Autores principales: | Wang, Shen, Zhou, Yuyuan, Qin, Xiaochen, Nair, Suresh, Huang, Xiaolei, Liu, Yaling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376046/ https://www.ncbi.nlm.nih.gov/pubmed/32699281 http://dx.doi.org/10.1038/s41598-020-69056-1 |
Ejemplares similares
-
Deep Learning-Enabled, Detection of Rare Circulating Tumor Cell Clusters in Whole Blood Using Label-free, Flow Cytometry
por: Vora, Nilay, et al.
Publicado: (2023) -
Machine Learning Methods for Fluorescence Lifetime Imaging (FLIM) Based Label-Free Detection of Microglia
por: Sagar, Md Abdul Kader, et al.
Publicado: (2020) -
Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning
por: Kobayashi, Hirofumi, et al.
Publicado: (2017) -
Hierarchical Vessel
Network-Supported Tumor Model-on-a-Chip
Constructed by Induced Spontaneous Anastomosis
por: Zhou, Yuyuan, et al.
Publicado: (2023) -
Label-free flow cytometry of rare circulating tumor cell clusters in whole blood
por: Vora, Nilay, et al.
Publicado: (2022)