Cargando…
A machine learning framework for multi-hazards modeling and mapping in a mountainous area
This study sought to produce an accurate multi-hazard risk map for a mountainous region of Iran. The study area is in southwestern Iran. The region has experienced numerous extreme natural events in recent decades. This study models the probabilities of snow avalanches, landslides, wildfires, land s...
Autores principales: | Yousefi, Saleh, Pourghasemi, Hamid Reza, Emami, Sayed Naeim, Pouyan, Soheila, Eskandari, Saeedeh, Tiefenbacher, John P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376103/ https://www.ncbi.nlm.nih.gov/pubmed/32699313 http://dx.doi.org/10.1038/s41598-020-69233-2 |
Ejemplares similares
-
Assessing the susceptibility of schools to flood events in Iran
por: Yousefi, Saleh, et al.
Publicado: (2020) -
A multi-hazard map-based flooding, gully erosion, forest fires, and earthquakes in Iran
por: Pouyan, Soheila, et al.
Publicado: (2021) -
Assessment of the outbreak risk, mapping and infection behavior of COVID-19: Application of the autoregressive integrated-moving average (ARIMA) and polynomial models
por: Pourghasemi, Hamid Reza, et al.
Publicado: (2020) -
Using machine learning to predict processes and morphometric features of watershed
por: Mokarram, Marzieh, et al.
Publicado: (2023) -
Author Correction: Using machine learning to predict processes and morphometric features of watershed
por: Mokarram, Marzieh, et al.
Publicado: (2023)