Cargando…
COVID-19 prevalence estimation by random sampling in population - optimal sample pooling under varying assumptions about true prevalence
BACKGROUND: The number of confirmed COVID-19 cases divided by population size is used as a coarse measurement for the burden of disease in a population. However, this fraction depends heavily on the sampling intensity and the various test criteria used in different jurisdictions, and many sources in...
Autor principal: | Brynildsrud, Ola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376319/ https://www.ncbi.nlm.nih.gov/pubmed/32703158 http://dx.doi.org/10.1186/s12874-020-01081-0 |
Ejemplares similares
-
More about the basic assumptions of t-test: normality and sample size
por: Kim, Tae Kyun, et al.
Publicado: (2019) -
Estimating viral prevalence with data fusion for adaptive two‐phase pooled sampling
por: Hoegh, Andrew, et al.
Publicado: (2021) -
Calculating the prevalence of soil-transmitted helminth infection through pooling of stool samples: Choosing and optimizing the pooling strategy
por: Truscott, James E., et al.
Publicado: (2019) -
Optimizing Pooled Testing for Estimating the Prevalence of Multiple Diseases
por: Warasi, Md S., et al.
Publicado: (2022) -
Bayesian Estimation of the True Prevalence and of the Diagnostic Test Sensitivity and Specificity of Enteropathogenic Yersinia in Finnish Pig Serum Samples
por: Vilar, M. J., et al.
Publicado: (2015)