Cargando…
Formation of Diacetyl and Other α-Dicarbonyl Compounds during the Generation of E-Vapor Product Aerosols
[Image: see text] Exposure to diacetyl (DA) has been linked to the respiratory condition bronchiolitis obliterans. Previous research has demonstrated that DA and other α-dicarbonyl compounds can be detected in both the e-liquids and aerosols of e-vapor products (EVPs). While some EVP manufacturers m...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377230/ https://www.ncbi.nlm.nih.gov/pubmed/32715241 http://dx.doi.org/10.1021/acsomega.0c02018 |
Sumario: | [Image: see text] Exposure to diacetyl (DA) has been linked to the respiratory condition bronchiolitis obliterans. Previous research has demonstrated that DA and other α-dicarbonyl compounds can be detected in both the e-liquids and aerosols of e-vapor products (EVPs). While some EVP manufacturers may add these compounds as flavor ingredients, the primary objective of this work was to determine the potential for the formation of α-dicarbonyl compounds during the generation of aerosols from EVPs where no DA or other α-dicarbonyl compounds are added to the e-liquid. A novel ultraperformance liquid chromatography-mass spectrometry-based analytical method for the determination of DA, acetyl propionyl, glyoxal, and methylglyoxal was developed and validated. Next, eight commercially available cig-a-like-type EVPs were evaluated for α-dicarbonyl formation. Increased levels of α-dicarbonyls were observed in the aerosols of all evaluated EVPs compared to their respective e-liquids. Mechanistic studies were conducted using a model microwave reaction system to identify key reaction precursors for DA generated from propylene glycol (PG) and carbon-13-labeled glycerin (GLY). These studies, along with the corresponding retrosynthetic analysis, resulted in the proposed formation pathway where hydroxyacetone is generated from PG and/or GLY. Hydroxyacetone then participates in an aldol condensation with formaldehyde where formaldehyde can also be generated from PG and/or GLY; the resultant product then dehydrates to form DA. This proposed pathway was further investigated through in situ synthetic organic experiments within the model microwave reaction system. This work establishes that DA is formed in the aerosol generation process of the EVPs tested though at levels below toxicological concern. |
---|