Cargando…
Development of New Rheological Models for Class G Cement with Nanoclay as an Additive Using Machine Learning Techniques
[Image: see text] The rheology of the oil well cement plays a pivotal role in the cement placement. Accurate prediction of cement rheological parameters helps to monitor the durability and pumpability of the cement slurry. In this study, an artificial neural network is used to develop different mode...
Autores principales: | Tariq, Zeeshan, Murtaza, Mobeen, Mahmoud, Mohamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377322/ https://www.ncbi.nlm.nih.gov/pubmed/32715250 http://dx.doi.org/10.1021/acsomega.0c02122 |
Ejemplares similares
-
Effects of Nanoclay and Silica Flour on the Mechanical
Properties of Class G Cement
por: Tariq, Zeeshan, et al.
Publicado: (2020) -
H(2)S Scavenging Capacity and Rheological
Properties of Water-Based Drilling Muds
por: Onaizi, Sagheer A., et al.
Publicado: (2020) -
Experimental Investigation of the Rheological Behavior of an Oil-Based Drilling Fluid with Rheology Modifier and Oil Wetter Additives
por: Murtaza, Mobeen, et al.
Publicado: (2021) -
Novel Expandable Cement System for Prevention of Sustained
Casing Pressure and Minimization of Lost Circulation
por: Murtaza, Mobeen, et al.
Publicado: (2021) -
Machine Learning-Based
Accelerated Approaches to Infer
Breakdown Pressure of Several Unconventional Rock Types
por: Tariq, Zeeshan, et al.
Publicado: (2022)