Cargando…
100th Anniversary of Macromolecular Science Viewpoint: Re-Engineering Cellular Interfaces with Synthetic Macromolecules Using Metabolic Glycan Labeling
[Image: see text] Cell-surface functionality is largely programmed by genetically encoded information through modulation of protein expression levels, including glycosylation enzymes. Genetic tools enable control over protein-based functionality, but are not easily adapted to recruit non-native func...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377358/ https://www.ncbi.nlm.nih.gov/pubmed/32714634 http://dx.doi.org/10.1021/acsmacrolett.0c00317 |
_version_ | 1783562198971318272 |
---|---|
author | Tomás, Ruben M. F. Gibson, Matthew I. |
author_facet | Tomás, Ruben M. F. Gibson, Matthew I. |
author_sort | Tomás, Ruben M. F. |
collection | PubMed |
description | [Image: see text] Cell-surface functionality is largely programmed by genetically encoded information through modulation of protein expression levels, including glycosylation enzymes. Genetic tools enable control over protein-based functionality, but are not easily adapted to recruit non-native functionality such as synthetic polymers and nanomaterials to tune biological responses and attach therapeutic or imaging payloads. Similar to how polymer–protein conjugation evolved from nonspecific PEGylation to site-selective bioconjugates, the same evolution is now occurring for polymer–cell conjugation. This Viewpoint discusses the potential of using metabolic glycan labeling to install bio-orthogonal reactive cell-surface anchors for the recruitment of synthetic polymers and nanomaterials to cell surfaces, exploring the expanding therapeutic and diagnostic potential. Comparisons to conventional approaches that target endogenous membrane components, such as hydrophobic, protein coupling and electrostatic conjugation, as well as enzymatic and genetic tools, have been made to highlight the huge potential of this approach in the emerging cellular engineering field. |
format | Online Article Text |
id | pubmed-7377358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-73773582020-07-24 100th Anniversary of Macromolecular Science Viewpoint: Re-Engineering Cellular Interfaces with Synthetic Macromolecules Using Metabolic Glycan Labeling Tomás, Ruben M. F. Gibson, Matthew I. ACS Macro Lett [Image: see text] Cell-surface functionality is largely programmed by genetically encoded information through modulation of protein expression levels, including glycosylation enzymes. Genetic tools enable control over protein-based functionality, but are not easily adapted to recruit non-native functionality such as synthetic polymers and nanomaterials to tune biological responses and attach therapeutic or imaging payloads. Similar to how polymer–protein conjugation evolved from nonspecific PEGylation to site-selective bioconjugates, the same evolution is now occurring for polymer–cell conjugation. This Viewpoint discusses the potential of using metabolic glycan labeling to install bio-orthogonal reactive cell-surface anchors for the recruitment of synthetic polymers and nanomaterials to cell surfaces, exploring the expanding therapeutic and diagnostic potential. Comparisons to conventional approaches that target endogenous membrane components, such as hydrophobic, protein coupling and electrostatic conjugation, as well as enzymatic and genetic tools, have been made to highlight the huge potential of this approach in the emerging cellular engineering field. American Chemical Society 2020-06-25 2020-07-21 /pmc/articles/PMC7377358/ /pubmed/32714634 http://dx.doi.org/10.1021/acsmacrolett.0c00317 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Tomás, Ruben M. F. Gibson, Matthew I. 100th Anniversary of Macromolecular Science Viewpoint: Re-Engineering Cellular Interfaces with Synthetic Macromolecules Using Metabolic Glycan Labeling |
title | 100th Anniversary of Macromolecular Science Viewpoint:
Re-Engineering Cellular Interfaces with Synthetic Macromolecules Using
Metabolic Glycan Labeling |
title_full | 100th Anniversary of Macromolecular Science Viewpoint:
Re-Engineering Cellular Interfaces with Synthetic Macromolecules Using
Metabolic Glycan Labeling |
title_fullStr | 100th Anniversary of Macromolecular Science Viewpoint:
Re-Engineering Cellular Interfaces with Synthetic Macromolecules Using
Metabolic Glycan Labeling |
title_full_unstemmed | 100th Anniversary of Macromolecular Science Viewpoint:
Re-Engineering Cellular Interfaces with Synthetic Macromolecules Using
Metabolic Glycan Labeling |
title_short | 100th Anniversary of Macromolecular Science Viewpoint:
Re-Engineering Cellular Interfaces with Synthetic Macromolecules Using
Metabolic Glycan Labeling |
title_sort | 100th anniversary of macromolecular science viewpoint:
re-engineering cellular interfaces with synthetic macromolecules using
metabolic glycan labeling |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377358/ https://www.ncbi.nlm.nih.gov/pubmed/32714634 http://dx.doi.org/10.1021/acsmacrolett.0c00317 |
work_keys_str_mv | AT tomasrubenmf 100thanniversaryofmacromolecularscienceviewpointreengineeringcellularinterfaceswithsyntheticmacromoleculesusingmetabolicglycanlabeling AT gibsonmatthewi 100thanniversaryofmacromolecularscienceviewpointreengineeringcellularinterfaceswithsyntheticmacromoleculesusingmetabolicglycanlabeling |