Cargando…

A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth

Multi-scale simulations, combining muscle and joint contact force (JCF) from musculoskeletal simulations with adaptive mechanobiological finite element analysis, allow to estimate musculoskeletal loading and predict femoral growth in children. Generic linearly scaled musculoskeletal models are commo...

Descripción completa

Detalles Bibliográficos
Autores principales: Kainz, Hans, Killen, Bryce Adrian, Wesseling, Mariska, Perez-Boerema, Fernando, Pitto, Lorenzo, Garcia Aznar, Jose Manuel, Shefelbine, Sandra, Jonkers, Ilse
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377390/
https://www.ncbi.nlm.nih.gov/pubmed/32702015
http://dx.doi.org/10.1371/journal.pone.0235966
_version_ 1783562206065983488
author Kainz, Hans
Killen, Bryce Adrian
Wesseling, Mariska
Perez-Boerema, Fernando
Pitto, Lorenzo
Garcia Aznar, Jose Manuel
Shefelbine, Sandra
Jonkers, Ilse
author_facet Kainz, Hans
Killen, Bryce Adrian
Wesseling, Mariska
Perez-Boerema, Fernando
Pitto, Lorenzo
Garcia Aznar, Jose Manuel
Shefelbine, Sandra
Jonkers, Ilse
author_sort Kainz, Hans
collection PubMed
description Multi-scale simulations, combining muscle and joint contact force (JCF) from musculoskeletal simulations with adaptive mechanobiological finite element analysis, allow to estimate musculoskeletal loading and predict femoral growth in children. Generic linearly scaled musculoskeletal models are commonly used. This approach, however, neglects subject- and age-specific musculoskeletal geometry, e.g. femoral neck-shaft angle (NSA) and anteversion angle (AVA). This study aimed to evaluate the impact of proximal femoral geometry, i.e. altered NSA and AVA, on hip JCF and femoral growth simulations. Musculoskeletal models with NSA ranging from 120° to 150° and AVA ranging from 20° to 50° were created and used to calculate muscle and hip JCF based on the gait analysis data of a typically developing child. A finite element model of a paediatric femur was created from magnetic resonance images. The finite element model was morphed to the geometries of the different musculoskeletal models and used for mechanobiological finite element analysis to predict femoral growth trends. Our findings showed that hip JCF increase with increasing NSA and AVA. Furthermore, the orientation of the hip JCF followed the orientation of the femoral neck axis. Consequently, the osteogenic index, which is a function of cartilage stresses and defines the growth rate, barely changed with altered NSA and AVA. Nevertheless, growth predictions were sensitive to the femoral geometry due to changes in the predicted growth directions. Altered NSA had a bigger impact on the growth results than altered AVA. Growth simulations based on mechanobiological principles were in agreement with reported changes in paediatric populations.
format Online
Article
Text
id pubmed-7377390
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-73773902020-08-12 A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth Kainz, Hans Killen, Bryce Adrian Wesseling, Mariska Perez-Boerema, Fernando Pitto, Lorenzo Garcia Aznar, Jose Manuel Shefelbine, Sandra Jonkers, Ilse PLoS One Research Article Multi-scale simulations, combining muscle and joint contact force (JCF) from musculoskeletal simulations with adaptive mechanobiological finite element analysis, allow to estimate musculoskeletal loading and predict femoral growth in children. Generic linearly scaled musculoskeletal models are commonly used. This approach, however, neglects subject- and age-specific musculoskeletal geometry, e.g. femoral neck-shaft angle (NSA) and anteversion angle (AVA). This study aimed to evaluate the impact of proximal femoral geometry, i.e. altered NSA and AVA, on hip JCF and femoral growth simulations. Musculoskeletal models with NSA ranging from 120° to 150° and AVA ranging from 20° to 50° were created and used to calculate muscle and hip JCF based on the gait analysis data of a typically developing child. A finite element model of a paediatric femur was created from magnetic resonance images. The finite element model was morphed to the geometries of the different musculoskeletal models and used for mechanobiological finite element analysis to predict femoral growth trends. Our findings showed that hip JCF increase with increasing NSA and AVA. Furthermore, the orientation of the hip JCF followed the orientation of the femoral neck axis. Consequently, the osteogenic index, which is a function of cartilage stresses and defines the growth rate, barely changed with altered NSA and AVA. Nevertheless, growth predictions were sensitive to the femoral geometry due to changes in the predicted growth directions. Altered NSA had a bigger impact on the growth results than altered AVA. Growth simulations based on mechanobiological principles were in agreement with reported changes in paediatric populations. Public Library of Science 2020-07-23 /pmc/articles/PMC7377390/ /pubmed/32702015 http://dx.doi.org/10.1371/journal.pone.0235966 Text en © 2020 Kainz et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Kainz, Hans
Killen, Bryce Adrian
Wesseling, Mariska
Perez-Boerema, Fernando
Pitto, Lorenzo
Garcia Aznar, Jose Manuel
Shefelbine, Sandra
Jonkers, Ilse
A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth
title A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth
title_full A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth
title_fullStr A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth
title_full_unstemmed A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth
title_short A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth
title_sort multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377390/
https://www.ncbi.nlm.nih.gov/pubmed/32702015
http://dx.doi.org/10.1371/journal.pone.0235966
work_keys_str_mv AT kainzhans amultiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT killenbryceadrian amultiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT wesselingmariska amultiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT perezboeremafernando amultiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT pittolorenzo amultiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT garciaaznarjosemanuel amultiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT shefelbinesandra amultiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT jonkersilse amultiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT kainzhans multiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT killenbryceadrian multiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT wesselingmariska multiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT perezboeremafernando multiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT pittolorenzo multiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT garciaaznarjosemanuel multiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT shefelbinesandra multiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth
AT jonkersilse multiscalemodellingframeworkcombiningmusculoskeletalrigidbodysimulationswithadaptivefiniteelementanalysestoevaluatetheimpactoffemoralgeometryonhipjointcontactforcesandfemoralbonegrowth