Cargando…

Mating system is correlated with immunogenetic diversity in sympatric species of Peromyscine mice

The number of reproductive partners per individual varies markedly across animal mating systems. This variation may be an important determinant of patterns of immunogenetic diversity, particularly at Major Histocompatibility Complex (MHC) Class I and II loci. To compare immunogenetic variation in ta...

Descripción completa

Detalles Bibliográficos
Autores principales: Meléndez-Rosa, Jesyka, Bi, Ke, Lacey, Eileen A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377423/
https://www.ncbi.nlm.nih.gov/pubmed/32701975
http://dx.doi.org/10.1371/journal.pone.0236084
_version_ 1783562213410209792
author Meléndez-Rosa, Jesyka
Bi, Ke
Lacey, Eileen A.
author_facet Meléndez-Rosa, Jesyka
Bi, Ke
Lacey, Eileen A.
author_sort Meléndez-Rosa, Jesyka
collection PubMed
description The number of reproductive partners per individual varies markedly across animal mating systems. This variation may be an important determinant of patterns of immunogenetic diversity, particularly at Major Histocompatibility Complex (MHC) Class I and II loci. To compare immunogenetic variation in taxa with markedly different mating systems, we used RNAseq-generated data to quantify genotypic diversity in three species of Peromyscine rodents: the monogamous California mouse (Peromyscus californicus) and the polygynandrous deer mouse (P. maniculatus) and brush mouse (P. boylii). By sampling populations of these species from multiple localities in California, we were able to conduct replicated analyses of the relationship between mating system and immunogenetic variation. Across the four localities sampled, diversity at MHC Class I and II genes was consistently higher in the two polygynandrous species. We found no evidence that sampling location (i.e., variation in habitat conditions) contributed to observed differences in MHC variation among populations or species. Collectively, our data indicate that immunogenetic variation in Peromyscine mice is associated with reproductive behavior, rather than geographic locality or habitat type. The consistently greater variability detected in the polygynandrous species examined suggests that balancing selection imposed by behaviorally-mediated pathogen exposure is important in maintaining variation at MHC genes in these animals.
format Online
Article
Text
id pubmed-7377423
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-73774232020-07-27 Mating system is correlated with immunogenetic diversity in sympatric species of Peromyscine mice Meléndez-Rosa, Jesyka Bi, Ke Lacey, Eileen A. PLoS One Research Article The number of reproductive partners per individual varies markedly across animal mating systems. This variation may be an important determinant of patterns of immunogenetic diversity, particularly at Major Histocompatibility Complex (MHC) Class I and II loci. To compare immunogenetic variation in taxa with markedly different mating systems, we used RNAseq-generated data to quantify genotypic diversity in three species of Peromyscine rodents: the monogamous California mouse (Peromyscus californicus) and the polygynandrous deer mouse (P. maniculatus) and brush mouse (P. boylii). By sampling populations of these species from multiple localities in California, we were able to conduct replicated analyses of the relationship between mating system and immunogenetic variation. Across the four localities sampled, diversity at MHC Class I and II genes was consistently higher in the two polygynandrous species. We found no evidence that sampling location (i.e., variation in habitat conditions) contributed to observed differences in MHC variation among populations or species. Collectively, our data indicate that immunogenetic variation in Peromyscine mice is associated with reproductive behavior, rather than geographic locality or habitat type. The consistently greater variability detected in the polygynandrous species examined suggests that balancing selection imposed by behaviorally-mediated pathogen exposure is important in maintaining variation at MHC genes in these animals. Public Library of Science 2020-07-23 /pmc/articles/PMC7377423/ /pubmed/32701975 http://dx.doi.org/10.1371/journal.pone.0236084 Text en © 2020 Meléndez-Rosa et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Meléndez-Rosa, Jesyka
Bi, Ke
Lacey, Eileen A.
Mating system is correlated with immunogenetic diversity in sympatric species of Peromyscine mice
title Mating system is correlated with immunogenetic diversity in sympatric species of Peromyscine mice
title_full Mating system is correlated with immunogenetic diversity in sympatric species of Peromyscine mice
title_fullStr Mating system is correlated with immunogenetic diversity in sympatric species of Peromyscine mice
title_full_unstemmed Mating system is correlated with immunogenetic diversity in sympatric species of Peromyscine mice
title_short Mating system is correlated with immunogenetic diversity in sympatric species of Peromyscine mice
title_sort mating system is correlated with immunogenetic diversity in sympatric species of peromyscine mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377423/
https://www.ncbi.nlm.nih.gov/pubmed/32701975
http://dx.doi.org/10.1371/journal.pone.0236084
work_keys_str_mv AT melendezrosajesyka matingsystemiscorrelatedwithimmunogeneticdiversityinsympatricspeciesofperomyscinemice
AT bike matingsystemiscorrelatedwithimmunogeneticdiversityinsympatricspeciesofperomyscinemice
AT laceyeileena matingsystemiscorrelatedwithimmunogeneticdiversityinsympatricspeciesofperomyscinemice