Cargando…
Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window
Measuring the semantic similarity between words is important for natural language processing tasks. The traditional models of semantic similarity perform well in most cases, but when dealing with words that involve geographical context, spatial semantics of implied spatial information are rarely pre...
Autores principales: | Wang, Bozhi, Fei, Teng, Kang, Yuhao, Li, Meng, Du, Qingyun, Han, Meng, Dong, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377466/ https://www.ncbi.nlm.nih.gov/pubmed/32702022 http://dx.doi.org/10.1371/journal.pone.0236347 |
Ejemplares similares
-
Correction: Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window
por: Wang, Bozhi, et al.
Publicado: (2021) -
Computationally scalable geospatial network and routing analysis through multi-level spatial clustering.
por: Chambers, Jonathan
Publicado: (2020) -
Semantic Similarity to Known Second Language Words Impacts Learning of New Meanings
por: Zhang, Yuanyue, et al.
Publicado: (2018) -
A novel multi-word paradigm for investigating semantic context effects in language production
por: van Scherpenberg, Cornelia, et al.
Publicado: (2020) -
The Effect of Semantic Similarity on Learning Ambiguous Words in a Second Language: An Event-Related Potential Study
por: Zhang, Yuanyue, et al.
Publicado: (2020)