Cargando…
Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data
Single-cell DNA sequencing technologies are enabling the study of mutations and their evolutionary trajectories in cancer. Somatic copy number aberrations (CNAs) have been implicated in the development and progression of various types of cancer. A wide array of methods for CNA detection has been eit...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377518/ https://www.ncbi.nlm.nih.gov/pubmed/32658894 http://dx.doi.org/10.1371/journal.pcbi.1008012 |
_version_ | 1783562233013338112 |
---|---|
author | Mallory, Xian F. Edrisi, Mohammadamin Navin, Nicholas Nakhleh, Luay |
author_facet | Mallory, Xian F. Edrisi, Mohammadamin Navin, Nicholas Nakhleh, Luay |
author_sort | Mallory, Xian F. |
collection | PubMed |
description | Single-cell DNA sequencing technologies are enabling the study of mutations and their evolutionary trajectories in cancer. Somatic copy number aberrations (CNAs) have been implicated in the development and progression of various types of cancer. A wide array of methods for CNA detection has been either developed specifically for or adapted to single-cell DNA sequencing data. Understanding the strengths and limitations that are unique to each of these methods is very important for obtaining accurate copy number profiles from single-cell DNA sequencing data. We benchmarked three widely used methods–Ginkgo, HMMcopy, and CopyNumber–on simulated as well as real datasets. To facilitate this, we developed a novel simulator of single-cell genome evolution in the presence of CNAs. Furthermore, to assess performance on empirical data where the ground truth is unknown, we introduce a phylogeny-based measure for identifying potentially erroneous inferences. While single-cell DNA sequencing is very promising for elucidating and understanding CNAs, our findings show that even the best existing method does not exceed 80% accuracy. New methods that significantly improve upon the accuracy of these three methods are needed. Furthermore, with the large datasets being generated, the methods must be computationally efficient. |
format | Online Article Text |
id | pubmed-7377518 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-73775182020-07-27 Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data Mallory, Xian F. Edrisi, Mohammadamin Navin, Nicholas Nakhleh, Luay PLoS Comput Biol Research Article Single-cell DNA sequencing technologies are enabling the study of mutations and their evolutionary trajectories in cancer. Somatic copy number aberrations (CNAs) have been implicated in the development and progression of various types of cancer. A wide array of methods for CNA detection has been either developed specifically for or adapted to single-cell DNA sequencing data. Understanding the strengths and limitations that are unique to each of these methods is very important for obtaining accurate copy number profiles from single-cell DNA sequencing data. We benchmarked three widely used methods–Ginkgo, HMMcopy, and CopyNumber–on simulated as well as real datasets. To facilitate this, we developed a novel simulator of single-cell genome evolution in the presence of CNAs. Furthermore, to assess performance on empirical data where the ground truth is unknown, we introduce a phylogeny-based measure for identifying potentially erroneous inferences. While single-cell DNA sequencing is very promising for elucidating and understanding CNAs, our findings show that even the best existing method does not exceed 80% accuracy. New methods that significantly improve upon the accuracy of these three methods are needed. Furthermore, with the large datasets being generated, the methods must be computationally efficient. Public Library of Science 2020-07-13 /pmc/articles/PMC7377518/ /pubmed/32658894 http://dx.doi.org/10.1371/journal.pcbi.1008012 Text en © 2020 Mallory et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Mallory, Xian F. Edrisi, Mohammadamin Navin, Nicholas Nakhleh, Luay Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data |
title | Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data |
title_full | Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data |
title_fullStr | Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data |
title_full_unstemmed | Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data |
title_short | Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data |
title_sort | assessing the performance of methods for copy number aberration detection from single-cell dna sequencing data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377518/ https://www.ncbi.nlm.nih.gov/pubmed/32658894 http://dx.doi.org/10.1371/journal.pcbi.1008012 |
work_keys_str_mv | AT malloryxianf assessingtheperformanceofmethodsforcopynumberaberrationdetectionfromsinglecelldnasequencingdata AT edrisimohammadamin assessingtheperformanceofmethodsforcopynumberaberrationdetectionfromsinglecelldnasequencingdata AT navinnicholas assessingtheperformanceofmethodsforcopynumberaberrationdetectionfromsinglecelldnasequencingdata AT nakhlehluay assessingtheperformanceofmethodsforcopynumberaberrationdetectionfromsinglecelldnasequencingdata |