Cargando…

CircMTO1 Attenuated Acute Kidney Injury Through Regulating miR-337

Acute kidney injury (AKI) is an independent risk factor for the increased risk of death in patients with sepsis. In the current study, we first investigated the expression of circMTO1 in sepsis-induced AKI, and the underlying mechanism was further elucidated. The results showed that circMTO1 express...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Chuan-chuan, Pan, Lu-yan, Peng, Zhi-yong, Li, Jian-guo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378047/
https://www.ncbi.nlm.nih.gov/pubmed/32157506
http://dx.doi.org/10.1007/s10753-020-01209-w
Descripción
Sumario:Acute kidney injury (AKI) is an independent risk factor for the increased risk of death in patients with sepsis. In the current study, we first investigated the expression of circMTO1 in sepsis-induced AKI, and the underlying mechanism was further elucidated. The results showed that circMTO1 expression level was significantly decreased in serums and kidney tissues of US rats and RMCs treated with LPS. Besides, circMTO1 overexpression promoted cell viability, suppressed cell apoptosis and cytokines production of LPS-treated RMCs. Bioinformatics analysis showed that circMTO1 served as a sponge for miR-337. Furthermore, circMTO1 could inhibit the expression of KLF6. Altogether, our study first reported that circMTO1 expression was decreased in sepsis-induced AKI rat models and RMCs treated with LPS. CircMTO1 overexpression could attenuate AKI development by sponging miR-337 and regulating KLF6 expression, which may provide new ideas for evaluation the pathogenesis and the treatment of sepsis-induced AKI.