Cargando…
Novel application of an automated-machine learning development tool for predicting burn sepsis: proof of concept
Sepsis is the primary cause of burn-related mortality and morbidity. Traditional indicators of sepsis exhibit poor performance when used in this unique population due to their underlying hypermetabolic and inflammatory response following burn injury. To address this challenge, we developed the Machi...
Autores principales: | Tran, Nam K., Albahra, Samer, Pham, Tam N., Holmes, James H., Greenhalgh, David, Palmieri, Tina L., Wajda, Jeffery, Rashidi, Hooman H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378181/ https://www.ncbi.nlm.nih.gov/pubmed/32704168 http://dx.doi.org/10.1038/s41598-020-69433-w |
Ejemplares similares
-
Prediction of tuberculosis using an automated machine learning platform for models trained on synthetic data
por: Rashidi, Hooman H., et al.
Publicado: (2022) -
Early Recognition of Burn- and Trauma-Related Acute Kidney Injury: A Pilot Comparison of Machine Learning Techniques
por: Rashidi, Hooman H., et al.
Publicado: (2020) -
Common statistical concepts in the supervised Machine Learning arena
por: Rashidi, Hooman H., et al.
Publicado: (2023) -
Innovations in infectious disease testing: Leveraging COVID-19 pandemic technologies for the future
por: Tran, Nam K., et al.
Publicado: (2023) -
Automated machine learning for endemic active tuberculosis prediction from multiplex serological data
por: Rashidi, Hooman H., et al.
Publicado: (2021)