Cargando…
High-resolution monthly precipitation and temperature time series from 2006 to 2100
Predicting future climatic conditions at high spatial resolution is essential for many applications and impact studies in science. Here, we present monthly time series data on precipitation, minimum- and maximum temperature for four downscaled global circulation models. We used model output statisti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378208/ https://www.ncbi.nlm.nih.gov/pubmed/32703947 http://dx.doi.org/10.1038/s41597-020-00587-y |
Sumario: | Predicting future climatic conditions at high spatial resolution is essential for many applications and impact studies in science. Here, we present monthly time series data on precipitation, minimum- and maximum temperature for four downscaled global circulation models. We used model output statistics in combination with mechanistic downscaling (the CHELSA algorithm) to calculate mean monthly maximum and minimum temperatures, as well as monthly precipitation at ~5 km spatial resolution globally for the years 2006–2100. We validated the performance of the downscaling algorithm by comparing model output with the observed climate of the historical period 1950–1969. |
---|