Cargando…

Impact of 10-Myr scale monsoon dynamics on Mesozoic climate and ecosystems

Earth’s orbital variations on timescales of 10(4)–10(5) years, known as Milankovitch cycles, have played a critical role in pacing climate change and ecosystem dynamics, through glacial and/or monsoon dynamics. However, the climatic and biotic consequences of these cycles on much longer (~ 10(7) yea...

Descripción completa

Detalles Bibliográficos
Autores principales: Ikeda, Masayuki, Ozaki, Kazumi, Legrand, Julien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378230/
https://www.ncbi.nlm.nih.gov/pubmed/32704030
http://dx.doi.org/10.1038/s41598-020-68542-w
Descripción
Sumario:Earth’s orbital variations on timescales of 10(4)–10(5) years, known as Milankovitch cycles, have played a critical role in pacing climate change and ecosystem dynamics, through glacial and/or monsoon dynamics. However, the climatic and biotic consequences of these cycles on much longer (~ 10(7) years) timescales remain unclear, due to a lack of long proxy records with precise age constraints. Here, we show ~ 10-Myr scale variations in early Mesozoic (250–180 Ma) records of lake-level, desert distribution, biogenic-silica burial flux, atmospheric CO(2) levels (pCO(2)), and sea-surface-temperature (SST). Their phase relationships, coupled with carbon cycle modeling results, suggest that orbitally-paced summer monsoon dynamics modulates changes in terrestrial weatherability by ~ 20%, affecting changes in pCO(2) of up to 500–1,000 ppmv and 3–7 °C SST. We also infer that these ~ 10-Myr scale climatic variations could have been causally linked to biotic turnover, size variations in dinosaur footprints, and tetrapod dispersal, potentially through spatio-temporal variations in resource availability and arid-hot climatic barriers at low-middle latitudes.