Cargando…
Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress
Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance, but the regulation mechanism of exogenous ABA on tea plants under drought stress was rarely reported. Here, we analyzed the effects of exogenous ABA on genes and metabolites of tea leaves under drought st...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378251/ https://www.ncbi.nlm.nih.gov/pubmed/32704005 http://dx.doi.org/10.1038/s41598-020-69080-1 |
Sumario: | Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance, but the regulation mechanism of exogenous ABA on tea plants under drought stress was rarely reported. Here, we analyzed the effects of exogenous ABA on genes and metabolites of tea leaves under drought stress using transcriptomic and metabolomic analysis. The results showed that the exogenous ABA significantly induced the metabolic pathways of tea leaves under drought stress, including energy metabolism, amino acid metabolism, lipid metabolism and flavonoids biosynthesis. In which, the exogenous ABA could clearly affect the expression of genes involved in lipid metabolism and flavonoid biosynthesis. Meanwhile, it also increased the contents of flavone, anthocyanins, flavonol, isoflavone of tea leaves under drought stress, including, kaempferitrin, sakuranetin, kaempferol, and decreased the contents of glycerophospholipids, glycerolipids and fatty acids of tea leaves under drought stress. The results suggested that the exogenous ABA could alleviate the damages of tea leaves under drought stress through inducing the expression of the genes and altering the contents of metabolites in response to drought stress. This study will be helpful to understand the mechanism of resilience to abiotic stress in tea plant and provide novel insights into enhancing drought tolerance in the future. |
---|