Cargando…
Cordycepin attenuates Salivary Hypofunction through the Prevention of Oxidative Stress in Human Submandibular Gland Cells
Xerostomia (dry mouth) is a significant age-related condition. Meanwhile, cordycepin, the natural therapeutic agent, has demonstrated an anti-aging effect. Therefore, the present study aimed to investigate the preventive effects of cordycepin on secretory function in an in vitro model of hydrogen pe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378660/ https://www.ncbi.nlm.nih.gov/pubmed/32714076 http://dx.doi.org/10.7150/ijms.46707 |
_version_ | 1783562469266948096 |
---|---|
author | Jaiboonma, Atchara Kaokaen, Palakorn Chaicharoenaudomrung, Nipha Kunhorm, Phongsakorn Janebodin, Kajohnkiart Noisa, Parinya Jitprasertwong, Paiboon |
author_facet | Jaiboonma, Atchara Kaokaen, Palakorn Chaicharoenaudomrung, Nipha Kunhorm, Phongsakorn Janebodin, Kajohnkiart Noisa, Parinya Jitprasertwong, Paiboon |
author_sort | Jaiboonma, Atchara |
collection | PubMed |
description | Xerostomia (dry mouth) is a significant age-related condition. Meanwhile, cordycepin, the natural therapeutic agent, has demonstrated an anti-aging effect. Therefore, the present study aimed to investigate the preventive effects of cordycepin on secretory function in an in vitro model of hydrogen peroxide (H(2)O(2))-induced salivary hypofunction. After being exposed to H(2)O(2), human submandibular gland (HSG) cells were treated with various concentrations of cordycepin (6.25-50 µM) for 24, 48, and 72h. To evaluate cell proliferation and reactive oxygen species (ROS) generation, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and 2, 7'-dichlorodihydrofluorescein diacetate assays were performed. The amylase activity was kinetically measured by 2-chloro-p-nitrophenol linked with maltotrioside. The expression of salivary, antioxidant and apoptotic markers at mRNA and protein levels were performed by reverse transcriptase polymerase chain reaction (RT-PCR) and immunofluorescence analysis, respectively. We demonstrated that cordycepin (6.25-25 µM) contributed to significant increases in expression of the salivary marker genes, alpha-amylase 1 (AMY1A) and aquaporin-5 (AQP5), and in amylase secretion without changes in cell viability. Under oxidative stress, HSG cells showed remarkable dysfunction. Cordycepin rescued the protective effects partially by decreasing ROS generation and restoring the expression of the salivary proteins, AMY and AQP5 via anti-oxidant and anti-apoptotic activity. In addition, the amount of amylase that was secreted from HSG cells cultured in cordycepin was increased. In conclusion, cordycepin demonstrated a protective effect on H(2)O(2)-induced HSG cells by decreasing ROS generation and upregulating the salivary function markers, AMY1A and AQP5, at both the transcriptional and translational levels. |
format | Online Article Text |
id | pubmed-7378660 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-73786602020-07-24 Cordycepin attenuates Salivary Hypofunction through the Prevention of Oxidative Stress in Human Submandibular Gland Cells Jaiboonma, Atchara Kaokaen, Palakorn Chaicharoenaudomrung, Nipha Kunhorm, Phongsakorn Janebodin, Kajohnkiart Noisa, Parinya Jitprasertwong, Paiboon Int J Med Sci Research Paper Xerostomia (dry mouth) is a significant age-related condition. Meanwhile, cordycepin, the natural therapeutic agent, has demonstrated an anti-aging effect. Therefore, the present study aimed to investigate the preventive effects of cordycepin on secretory function in an in vitro model of hydrogen peroxide (H(2)O(2))-induced salivary hypofunction. After being exposed to H(2)O(2), human submandibular gland (HSG) cells were treated with various concentrations of cordycepin (6.25-50 µM) for 24, 48, and 72h. To evaluate cell proliferation and reactive oxygen species (ROS) generation, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and 2, 7'-dichlorodihydrofluorescein diacetate assays were performed. The amylase activity was kinetically measured by 2-chloro-p-nitrophenol linked with maltotrioside. The expression of salivary, antioxidant and apoptotic markers at mRNA and protein levels were performed by reverse transcriptase polymerase chain reaction (RT-PCR) and immunofluorescence analysis, respectively. We demonstrated that cordycepin (6.25-25 µM) contributed to significant increases in expression of the salivary marker genes, alpha-amylase 1 (AMY1A) and aquaporin-5 (AQP5), and in amylase secretion without changes in cell viability. Under oxidative stress, HSG cells showed remarkable dysfunction. Cordycepin rescued the protective effects partially by decreasing ROS generation and restoring the expression of the salivary proteins, AMY and AQP5 via anti-oxidant and anti-apoptotic activity. In addition, the amount of amylase that was secreted from HSG cells cultured in cordycepin was increased. In conclusion, cordycepin demonstrated a protective effect on H(2)O(2)-induced HSG cells by decreasing ROS generation and upregulating the salivary function markers, AMY1A and AQP5, at both the transcriptional and translational levels. Ivyspring International Publisher 2020-07-06 /pmc/articles/PMC7378660/ /pubmed/32714076 http://dx.doi.org/10.7150/ijms.46707 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Jaiboonma, Atchara Kaokaen, Palakorn Chaicharoenaudomrung, Nipha Kunhorm, Phongsakorn Janebodin, Kajohnkiart Noisa, Parinya Jitprasertwong, Paiboon Cordycepin attenuates Salivary Hypofunction through the Prevention of Oxidative Stress in Human Submandibular Gland Cells |
title | Cordycepin attenuates Salivary Hypofunction through the Prevention of Oxidative Stress in Human Submandibular Gland Cells |
title_full | Cordycepin attenuates Salivary Hypofunction through the Prevention of Oxidative Stress in Human Submandibular Gland Cells |
title_fullStr | Cordycepin attenuates Salivary Hypofunction through the Prevention of Oxidative Stress in Human Submandibular Gland Cells |
title_full_unstemmed | Cordycepin attenuates Salivary Hypofunction through the Prevention of Oxidative Stress in Human Submandibular Gland Cells |
title_short | Cordycepin attenuates Salivary Hypofunction through the Prevention of Oxidative Stress in Human Submandibular Gland Cells |
title_sort | cordycepin attenuates salivary hypofunction through the prevention of oxidative stress in human submandibular gland cells |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378660/ https://www.ncbi.nlm.nih.gov/pubmed/32714076 http://dx.doi.org/10.7150/ijms.46707 |
work_keys_str_mv | AT jaiboonmaatchara cordycepinattenuatessalivaryhypofunctionthroughthepreventionofoxidativestressinhumansubmandibularglandcells AT kaokaenpalakorn cordycepinattenuatessalivaryhypofunctionthroughthepreventionofoxidativestressinhumansubmandibularglandcells AT chaicharoenaudomrungnipha cordycepinattenuatessalivaryhypofunctionthroughthepreventionofoxidativestressinhumansubmandibularglandcells AT kunhormphongsakorn cordycepinattenuatessalivaryhypofunctionthroughthepreventionofoxidativestressinhumansubmandibularglandcells AT janebodinkajohnkiart cordycepinattenuatessalivaryhypofunctionthroughthepreventionofoxidativestressinhumansubmandibularglandcells AT noisaparinya cordycepinattenuatessalivaryhypofunctionthroughthepreventionofoxidativestressinhumansubmandibularglandcells AT jitprasertwongpaiboon cordycepinattenuatessalivaryhypofunctionthroughthepreventionofoxidativestressinhumansubmandibularglandcells |