Cargando…
Amplification of autocrine motility factor and its receptor in multiple myeloma and other musculoskeletal tumors
Autocrine motility factor (AMF: GPI) and its receptor AMFR (AMF Receptor: gp78) regulate the metastatic process. Here, we have tested the expression levels of AMF, AMFR, and AMF × AMFR in 1348 patients with musculoskeletal tumor. The results depicted here identified that multiple myeloma highly expr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378681/ https://www.ncbi.nlm.nih.gov/pubmed/32714781 http://dx.doi.org/10.1016/j.jbo.2020.100308 |
Sumario: | Autocrine motility factor (AMF: GPI) and its receptor AMFR (AMF Receptor: gp78) regulate the metastatic process. Here, we have tested the expression levels of AMF, AMFR, and AMF × AMFR in 1348 patients with musculoskeletal tumor. The results depicted here identified that multiple myeloma highly express AMF × AMFR value as compared with normal bone samples (p < 0.00001). To visualize the AMF × AMFR autocrine amplification in multiple myeloma microenvironment, we have developed a novel software aimed at analyzing numerous cell-to-cell and ligand-to-receptor interactions, i.e., Environmentome. It has led to the identification that myeloma-associated interactions with normal bone cells including osteoblast, osteoclast, immunological components, and others in a paracrine manner. In conclusion, the data showed that AMF × AMFR amplification is a clinical manifestation in bone microenvironment of multiple myeloma. |
---|