Cargando…
Triaxial Accelerometer-Based Falls and Activities of Daily Life Detection Using Machine Learning
The detection of activities of daily living (ADL) and the detection of falls is of utmost importance for addressing the issue of serious injuries and death as a consequence of elderly people falling. Wearable sensors can provide a viable solution for monitoring people in danger of falls with minimal...
Autores principales: | Althobaiti, Turke, Katsigiannis, Stamos, Ramzan, Naeem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378757/ https://www.ncbi.nlm.nih.gov/pubmed/32640526 http://dx.doi.org/10.3390/s20133777 |
Ejemplares similares
-
On the Use of Deep Learning for Imaging-Based COVID-19 Detection Using Chest X-rays
por: Okolo, Gabriel Iluebe, et al.
Publicado: (2021) -
Real-Life/Real-Time Elderly Fall Detection with a Triaxial Accelerometer
por: Sucerquia, Angela, et al.
Publicado: (2018) -
Automated Detection of Substance-Use Status and Related Information from Clinical Text
por: Alzubi, Raid, et al.
Publicado: (2022) -
Physical Activity in Hemodialysis Patients Measured by Triaxial Accelerometer
por: Gomes, Edimar Pedrosa, et al.
Publicado: (2015) -
An Event-Triggered Machine Learning Approach for Accelerometer-Based Fall Detection
por: Putra, I Putu Edy Suardiyana, et al.
Publicado: (2017)