Cargando…
PIE: A prior knowledge guided integrated likelihood estimation method for bias reduction in association studies using electronic health records data
OBJECTIVES: This study proposes a novelPrior knowledge guidedIntegrated likelihoodEstimation (PIE) method to correct bias in estimations of associations due to misclassification of electronic health record (EHR)-derived binary phenotypes, and evaluates the performance of the proposed method by compa...
Autores principales: | Huang, Jing, Duan, Rui, Hubbard, Rebecca A, Wu, Yonghui, Moore, Jason H, Xu, Hua, Chen, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378882/ https://www.ncbi.nlm.nih.gov/pubmed/29206922 http://dx.doi.org/10.1093/jamia/ocx137 |
Ejemplares similares
-
Bias or biology? Importance of model interpretation in machine learning studies from electronic health records
por: Momenzadeh, Amanda, et al.
Publicado: (2022) -
PIE the search: searching PubMed literature for protein interaction information
por: Kim, Sun, et al.
Publicado: (2012) -
The electronic elephant in the room: Physicians and the electronic health record
por: Kroth, Philip J, et al.
Publicado: (2018) -
PheMap: a multi-resource knowledge base for high-throughput phenotyping within electronic health records
por: Zheng, Neil S, et al.
Publicado: (2020) -
Orders of Magnitude Extension of the Effective Dynamic Range of TDC-Based TOFMS Data Through Maximum Likelihood Estimation
por: Ipsen, Andreas, et al.
Publicado: (2014)