Cargando…
Effect of Conditioned Medium from Human Umbilical Cord-Derived Mesenchymal Stromal Cells on Rejuvenation of Nucleus Pulposus Derived Stem/Progenitor Cells from Degenerated Intervertebral Disc
BACKGROUND AND OBJECTIVES: Mesenchymal stromal cells (MSCs)-based treatment for degeneration of intervertebral disc (IVD) has been proposed recently. We here addressed whether MSC secreted factors can rejuvenate nucleus pulposus-derived stem/progenitor cells from degenerated disc (D-NPSCs) in vitro....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Stem Cell Research
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378895/ https://www.ncbi.nlm.nih.gov/pubmed/32587132 http://dx.doi.org/10.15283/ijsc20027 |
Sumario: | BACKGROUND AND OBJECTIVES: Mesenchymal stromal cells (MSCs)-based treatment for degeneration of intervertebral disc (IVD) has been proposed recently. We here addressed whether MSC secreted factors can rejuvenate nucleus pulposus-derived stem/progenitor cells from degenerated disc (D-NPSCs) in vitro. METHODS AND RESULTS: We analyzed the expression of MSCs and NP cell specific surface markers, pluripotency related genes, multilineage potential and cell proliferative capacity of D-NPSCs upon incubation with the conditioned medium which was collected from the umbilical cord derived MSCs (UCMSCs). Our results indicated that the conditioned medium restore the stemness of D-NPSCs by up-regulating the expression level of CD29 and CD105, pluripotency related genes OCT4 and Nanog, and NP progenitor marker Tie2. The increased stemness was accompanied by promoted cell proliferative capacity and improved osteogenic and chondrogenic differentiation potential. CONCLUSIONS: Our findings suggested that the UCMSCs derived conditioned medium might be used to rejuvenate the degenerated NP stem/progenitor cells. |
---|