Cargando…

Adipose Tissue-Derived Stem Cells from Type 2 Diabetics Reveal Conservative Alterations in Multidimensional Characteristics

BACKGROUND AND OBJECTIVES: Adipose tissue-derived mesenchymal stem cells (ASCs) are recognized as an advantaged source for the prevention and treatment of diverse diseases including type 2 diabetes mellitus (T2DM). However, alterations in characteristics of ASCs from the aforementioned T2DM patients...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Le, Zhang, Leisheng, Liang, Xue, Zou, Jiaqi, Liu, Na, Liu, Tengli, Wang, Guanqiao, Ding, Xuejie, Liu, Yaojuan, Zhang, Boya, Liang, Rui, Wang, Shusen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Stem Cell Research 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378902/
https://www.ncbi.nlm.nih.gov/pubmed/32587133
http://dx.doi.org/10.15283/ijsc20028
Descripción
Sumario:BACKGROUND AND OBJECTIVES: Adipose tissue-derived mesenchymal stem cells (ASCs) are recognized as an advantaged source for the prevention and treatment of diverse diseases including type 2 diabetes mellitus (T2DM). However, alterations in characteristics of ASCs from the aforementioned T2DM patients are still obscure, which also hinder the rigorous and systematic illumination of progression and pathogenesis. METHODS AND RESULTS: In this study, we originally isolated peripancreatic adipose tissue-derived mesenchymal stem cells from both human type 2 diabetic and non-diabetic donors (T2DM-ASCs, ND-ASCs) with the parental consent, respectively. We noticed that T2DM-ASCs exhibited indistinguishable immunophenotype, cell vitality, chondrogenic differentiation and stemness as ND-ASCs. Simultaneously, there’s merely alterations in migration and immunoregulatory capacities in T2DM-ASCs. However, differing from ND-ASCs, T2DM-ASCs exhibited deficiency in adipogenic and osteogenic differentiation, and in particular, the delayed cell cycle and different cytokine expression spectrum. CONCLUSIONS: The conservative alterations of T2DM-ASCs in multifaceted characteristics indicated the possibility of autologous application of ASCs for cell-based T2DM treatment in the future.