Cargando…

Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes

[Image: see text] Molecular details often dictate the macroscopic properties of materials, yet due to their vastly different length scales, relationships between molecular structure and bulk properties can be difficult to predict a priori, requiring Edisonian optimizations and preventing rational de...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiao, Bo, Mohapatra, Somesh, Lopez, Jeffrey, Leverick, Graham M., Tatara, Ryoichi, Shibuya, Yoshiki, Jiang, Yivan, France-Lanord, Arthur, Grossman, Jeffrey C., Gómez-Bombarelli, Rafael, Johnson, Jeremiah A., Shao-Horn, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379101/
https://www.ncbi.nlm.nih.gov/pubmed/32724846
http://dx.doi.org/10.1021/acscentsci.0c00475
_version_ 1783562567883423744
author Qiao, Bo
Mohapatra, Somesh
Lopez, Jeffrey
Leverick, Graham M.
Tatara, Ryoichi
Shibuya, Yoshiki
Jiang, Yivan
France-Lanord, Arthur
Grossman, Jeffrey C.
Gómez-Bombarelli, Rafael
Johnson, Jeremiah A.
Shao-Horn, Yang
author_facet Qiao, Bo
Mohapatra, Somesh
Lopez, Jeffrey
Leverick, Graham M.
Tatara, Ryoichi
Shibuya, Yoshiki
Jiang, Yivan
France-Lanord, Arthur
Grossman, Jeffrey C.
Gómez-Bombarelli, Rafael
Johnson, Jeremiah A.
Shao-Horn, Yang
author_sort Qiao, Bo
collection PubMed
description [Image: see text] Molecular details often dictate the macroscopic properties of materials, yet due to their vastly different length scales, relationships between molecular structure and bulk properties can be difficult to predict a priori, requiring Edisonian optimizations and preventing rational design. Here, we introduce an easy-to-execute strategy based on linear free energy relationships (LFERs) that enables quantitative correlation and prediction of how molecular modifications, i.e., substituents, impact the ensemble properties of materials. First, we developed substituent parameters based on inexpensive, DFT-computed energetics of elementary pairwise interactions between a given substituent and other constant components of the material. These substituent parameters were then used as inputs to regression analyses of experimentally measured bulk properties, generating a predictive statistical model. We applied this approach to a widely studied class of electrolyte materials: oligo-ethylene glycol (OEG)–LiTFSI mixtures; the resulting model enables elucidation of fundamental physical principles that govern the properties of these electrolytes and also enables prediction of the properties of novel, improved OEG–LiTFSI-based electrolytes. The framework presented here for using context-specific substituent parameters will potentially enhance the throughput of screening new molecular designs for next-generation energy storage devices and other materials-oriented contexts where classical substituent parameters (e.g., Hammett parameters) may not be available or effective.
format Online
Article
Text
id pubmed-7379101
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-73791012020-07-27 Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes Qiao, Bo Mohapatra, Somesh Lopez, Jeffrey Leverick, Graham M. Tatara, Ryoichi Shibuya, Yoshiki Jiang, Yivan France-Lanord, Arthur Grossman, Jeffrey C. Gómez-Bombarelli, Rafael Johnson, Jeremiah A. Shao-Horn, Yang ACS Cent Sci [Image: see text] Molecular details often dictate the macroscopic properties of materials, yet due to their vastly different length scales, relationships between molecular structure and bulk properties can be difficult to predict a priori, requiring Edisonian optimizations and preventing rational design. Here, we introduce an easy-to-execute strategy based on linear free energy relationships (LFERs) that enables quantitative correlation and prediction of how molecular modifications, i.e., substituents, impact the ensemble properties of materials. First, we developed substituent parameters based on inexpensive, DFT-computed energetics of elementary pairwise interactions between a given substituent and other constant components of the material. These substituent parameters were then used as inputs to regression analyses of experimentally measured bulk properties, generating a predictive statistical model. We applied this approach to a widely studied class of electrolyte materials: oligo-ethylene glycol (OEG)–LiTFSI mixtures; the resulting model enables elucidation of fundamental physical principles that govern the properties of these electrolytes and also enables prediction of the properties of novel, improved OEG–LiTFSI-based electrolytes. The framework presented here for using context-specific substituent parameters will potentially enhance the throughput of screening new molecular designs for next-generation energy storage devices and other materials-oriented contexts where classical substituent parameters (e.g., Hammett parameters) may not be available or effective. American Chemical Society 2020-06-18 2020-07-22 /pmc/articles/PMC7379101/ /pubmed/32724846 http://dx.doi.org/10.1021/acscentsci.0c00475 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Qiao, Bo
Mohapatra, Somesh
Lopez, Jeffrey
Leverick, Graham M.
Tatara, Ryoichi
Shibuya, Yoshiki
Jiang, Yivan
France-Lanord, Arthur
Grossman, Jeffrey C.
Gómez-Bombarelli, Rafael
Johnson, Jeremiah A.
Shao-Horn, Yang
Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes
title Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes
title_full Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes
title_fullStr Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes
title_full_unstemmed Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes
title_short Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes
title_sort quantitative mapping of molecular substituents to macroscopic properties enables predictive design of oligoethylene glycol-based lithium electrolytes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379101/
https://www.ncbi.nlm.nih.gov/pubmed/32724846
http://dx.doi.org/10.1021/acscentsci.0c00475
work_keys_str_mv AT qiaobo quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes
AT mohapatrasomesh quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes
AT lopezjeffrey quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes
AT leverickgrahamm quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes
AT tatararyoichi quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes
AT shibuyayoshiki quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes
AT jiangyivan quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes
AT francelanordarthur quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes
AT grossmanjeffreyc quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes
AT gomezbombarellirafael quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes
AT johnsonjeremiaha quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes
AT shaohornyang quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes