Cargando…
Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes
[Image: see text] Molecular details often dictate the macroscopic properties of materials, yet due to their vastly different length scales, relationships between molecular structure and bulk properties can be difficult to predict a priori, requiring Edisonian optimizations and preventing rational de...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379101/ https://www.ncbi.nlm.nih.gov/pubmed/32724846 http://dx.doi.org/10.1021/acscentsci.0c00475 |
_version_ | 1783562567883423744 |
---|---|
author | Qiao, Bo Mohapatra, Somesh Lopez, Jeffrey Leverick, Graham M. Tatara, Ryoichi Shibuya, Yoshiki Jiang, Yivan France-Lanord, Arthur Grossman, Jeffrey C. Gómez-Bombarelli, Rafael Johnson, Jeremiah A. Shao-Horn, Yang |
author_facet | Qiao, Bo Mohapatra, Somesh Lopez, Jeffrey Leverick, Graham M. Tatara, Ryoichi Shibuya, Yoshiki Jiang, Yivan France-Lanord, Arthur Grossman, Jeffrey C. Gómez-Bombarelli, Rafael Johnson, Jeremiah A. Shao-Horn, Yang |
author_sort | Qiao, Bo |
collection | PubMed |
description | [Image: see text] Molecular details often dictate the macroscopic properties of materials, yet due to their vastly different length scales, relationships between molecular structure and bulk properties can be difficult to predict a priori, requiring Edisonian optimizations and preventing rational design. Here, we introduce an easy-to-execute strategy based on linear free energy relationships (LFERs) that enables quantitative correlation and prediction of how molecular modifications, i.e., substituents, impact the ensemble properties of materials. First, we developed substituent parameters based on inexpensive, DFT-computed energetics of elementary pairwise interactions between a given substituent and other constant components of the material. These substituent parameters were then used as inputs to regression analyses of experimentally measured bulk properties, generating a predictive statistical model. We applied this approach to a widely studied class of electrolyte materials: oligo-ethylene glycol (OEG)–LiTFSI mixtures; the resulting model enables elucidation of fundamental physical principles that govern the properties of these electrolytes and also enables prediction of the properties of novel, improved OEG–LiTFSI-based electrolytes. The framework presented here for using context-specific substituent parameters will potentially enhance the throughput of screening new molecular designs for next-generation energy storage devices and other materials-oriented contexts where classical substituent parameters (e.g., Hammett parameters) may not be available or effective. |
format | Online Article Text |
id | pubmed-7379101 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-73791012020-07-27 Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes Qiao, Bo Mohapatra, Somesh Lopez, Jeffrey Leverick, Graham M. Tatara, Ryoichi Shibuya, Yoshiki Jiang, Yivan France-Lanord, Arthur Grossman, Jeffrey C. Gómez-Bombarelli, Rafael Johnson, Jeremiah A. Shao-Horn, Yang ACS Cent Sci [Image: see text] Molecular details often dictate the macroscopic properties of materials, yet due to their vastly different length scales, relationships between molecular structure and bulk properties can be difficult to predict a priori, requiring Edisonian optimizations and preventing rational design. Here, we introduce an easy-to-execute strategy based on linear free energy relationships (LFERs) that enables quantitative correlation and prediction of how molecular modifications, i.e., substituents, impact the ensemble properties of materials. First, we developed substituent parameters based on inexpensive, DFT-computed energetics of elementary pairwise interactions between a given substituent and other constant components of the material. These substituent parameters were then used as inputs to regression analyses of experimentally measured bulk properties, generating a predictive statistical model. We applied this approach to a widely studied class of electrolyte materials: oligo-ethylene glycol (OEG)–LiTFSI mixtures; the resulting model enables elucidation of fundamental physical principles that govern the properties of these electrolytes and also enables prediction of the properties of novel, improved OEG–LiTFSI-based electrolytes. The framework presented here for using context-specific substituent parameters will potentially enhance the throughput of screening new molecular designs for next-generation energy storage devices and other materials-oriented contexts where classical substituent parameters (e.g., Hammett parameters) may not be available or effective. American Chemical Society 2020-06-18 2020-07-22 /pmc/articles/PMC7379101/ /pubmed/32724846 http://dx.doi.org/10.1021/acscentsci.0c00475 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Qiao, Bo Mohapatra, Somesh Lopez, Jeffrey Leverick, Graham M. Tatara, Ryoichi Shibuya, Yoshiki Jiang, Yivan France-Lanord, Arthur Grossman, Jeffrey C. Gómez-Bombarelli, Rafael Johnson, Jeremiah A. Shao-Horn, Yang Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes |
title | Quantitative Mapping of Molecular Substituents to
Macroscopic Properties Enables Predictive Design of Oligoethylene
Glycol-Based Lithium Electrolytes |
title_full | Quantitative Mapping of Molecular Substituents to
Macroscopic Properties Enables Predictive Design of Oligoethylene
Glycol-Based Lithium Electrolytes |
title_fullStr | Quantitative Mapping of Molecular Substituents to
Macroscopic Properties Enables Predictive Design of Oligoethylene
Glycol-Based Lithium Electrolytes |
title_full_unstemmed | Quantitative Mapping of Molecular Substituents to
Macroscopic Properties Enables Predictive Design of Oligoethylene
Glycol-Based Lithium Electrolytes |
title_short | Quantitative Mapping of Molecular Substituents to
Macroscopic Properties Enables Predictive Design of Oligoethylene
Glycol-Based Lithium Electrolytes |
title_sort | quantitative mapping of molecular substituents to
macroscopic properties enables predictive design of oligoethylene
glycol-based lithium electrolytes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379101/ https://www.ncbi.nlm.nih.gov/pubmed/32724846 http://dx.doi.org/10.1021/acscentsci.0c00475 |
work_keys_str_mv | AT qiaobo quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes AT mohapatrasomesh quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes AT lopezjeffrey quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes AT leverickgrahamm quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes AT tatararyoichi quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes AT shibuyayoshiki quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes AT jiangyivan quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes AT francelanordarthur quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes AT grossmanjeffreyc quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes AT gomezbombarellirafael quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes AT johnsonjeremiaha quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes AT shaohornyang quantitativemappingofmolecularsubstituentstomacroscopicpropertiesenablespredictivedesignofoligoethyleneglycolbasedlithiumelectrolytes |