Cargando…
Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology
BACKGROUND: Adverse drug reactions (ADRs) are one of the leading causes of morbidity and mortality in health care. Understanding which drug targets are linked to ADRs can lead to the development of safer medicines. METHODS: Here, we analyse in vitro secondary pharmacology of common (off) targets for...
Autores principales: | Ietswaart, Robert, Arat, Seda, Chen, Amanda X., Farahmand, Saman, Kim, Bumjun, DuMouchel, William, Armstrong, Duncan, Fekete, Alexander, Sutherland, Jeffrey J., Urban, Laszlo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379147/ https://www.ncbi.nlm.nih.gov/pubmed/32565027 http://dx.doi.org/10.1016/j.ebiom.2020.102837 |
Ejemplares similares
-
A preclinical secondary pharmacology resource illuminates target-adverse drug reaction associations of marketed drugs
por: Sutherland, Jeffrey J., et al.
Publicado: (2023) -
Reverse translation of adverse event reports paves the way for de-risking preclinical off-targets
por: Maciejewski, Mateusz, et al.
Publicado: (2017) -
A time-indexed reference standard of adverse drug reactions
por: Harpaz, Rave, et al.
Publicado: (2014) -
Signaling COVID-19 Vaccine Adverse Events
por: Harpaz, Rave, et al.
Publicado: (2022) -
Toward Enhanced Pharmacovigilance Using Patient-Generated Data on the Internet
por: White, R W, et al.
Publicado: (2014)