Cargando…
Random Subspace Ensemble Learning for Functional Near-Infrared Spectroscopy Brain-Computer Interfaces
The feasibility of the random subspace ensemble learning method was explored to improve the performance of functional near-infrared spectroscopy-based brain-computer interfaces (fNIRS-BCIs). Feature vectors have been constructed using the temporal characteristics of concentration changes in fNIRS ch...
Autor principal: | Shin, Jaeyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379868/ https://www.ncbi.nlm.nih.gov/pubmed/32765235 http://dx.doi.org/10.3389/fnhum.2020.00236 |
Ejemplares similares
-
A pediatric near-infrared spectroscopy brain-computer interface based on the detection of emotional valence
por: Floreani, Erica D., et al.
Publicado: (2022) -
Subject-Independent Functional Near-Infrared Spectroscopy-Based Brain–Computer Interfaces Based on Convolutional Neural Networks
por: Kwon, Jinuk, et al.
Publicado: (2021) -
Performance Improvement of Near-Infrared Spectroscopy-Based Brain-Computer Interface Using Regularized Linear Discriminant Analysis Ensemble Classifier Based on Bootstrap Aggregating
por: Shin, Jaeyoung, et al.
Publicado: (2020) -
The Usefulness of Functional Near-Infrared Spectroscopy for the Assessment of Post-Stroke Depression
por: Koyanagi, Masahiko, et al.
Publicado: (2021) -
Understanding the Neural Basis of Prospective Memory Using Functional Near-Infrared Spectroscopy
por: Koo, Yu Wen, et al.
Publicado: (2022)