Cargando…
Estimating sparse functional brain networks with spatial constraints for MCI identification
Functional brain network (FBN), estimated with functional magnetic resonance imaging (fMRI), has become a potentially useful way of diagnosing neurological disorders in their early stages by comparing the connectivity patterns between different brain regions across subjects. However, this depends, t...
Autores principales: | Xue, Yanfang, Zhang, Limei, Qiao, Lishan, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381102/ https://www.ncbi.nlm.nih.gov/pubmed/32707574 http://dx.doi.org/10.1371/journal.pone.0235039 |
Ejemplares similares
-
Correction: Estimating sparse functional brain networks with spatial constraints for MCI identification
por: Xue, Yanfang, et al.
Publicado: (2021) -
Estimating Brain Functional Networks Based on Adaptively-Weighted fMRI Signals for MCI Identification
por: Chen, Huihui, et al.
Publicado: (2021) -
Improving Sparsity and Modularity of High-Order Functional Connectivity Networks for MCI and ASD Identification
por: Zhou, Yueying, et al.
Publicado: (2018) -
Remodeling Pearson's Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification
por: Li, Weikai, et al.
Publicado: (2017) -
Brain Function Network: Higher Order vs. More Discrimination
por: Guo, Tingting, et al.
Publicado: (2021)