Cargando…
Identification of temporal condition patterns associated with pediatric obesity incidence using sequence mining and big data
BACKGROUND: Electronic health records (EHRs) are potentially important components in addressing pediatric obesity in clinical settings and at the population level. This work aims to identify temporal condition patterns surrounding obesity incidence in a large pediatric population that may inform cli...
Autores principales: | Campbell, Elizabeth A., Qian, Ting, Miller, Jeffrey M., Bass, Ellen J., Masino, Aaron J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381422/ https://www.ncbi.nlm.nih.gov/pubmed/32494036 http://dx.doi.org/10.1038/s41366-020-0614-7 |
Ejemplares similares
-
Temporal condition pattern mining in large, sparse electronic health record data: A case study in characterizing pediatric asthma
por: Campbell, Elizabeth A, et al.
Publicado: (2020) -
Characterizing clinical pediatric obesity subtypes using electronic health record data
por: Campbell, Elizabeth A., et al.
Publicado: (2022) -
T-Patterns Revisited: Mining for Temporal Patterns in Sensor Data
por: Salah, Albert Ali, et al.
Publicado: (2010) -
Social big data mining
por: Ishikawa, Hiroshi
Publicado: (2015) -
Big Data, Mining, and Analytics
por: Kudyba, Stephan
Publicado: (2014)