Cargando…
On Simulating Neural Damage in Connectionist Networks
A key strength of connectionist modelling is its ability to simulate both intact cognition and the behavioural effects of neural damage. We survey the literature, showing that models have been damaged in a variety of ways, e.g. by removing connections, by adding noise to connection weights, by scali...
Autores principales: | Guest, Olivia, Caso, Andrea, Cooper, Richard P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381482/ https://www.ncbi.nlm.nih.gov/pubmed/32766512 http://dx.doi.org/10.1007/s42113-020-00081-z |
Ejemplares similares
-
Hybrid connectionist model determines CO(2)–oil swelling factor
por: Ahmadi, Mohammad Ali, et al.
Publicado: (2018) -
Introduction to connectionist modelling of cognitive processes
por: McLeod, Peter
Publicado: (1998) -
Unsupervised learning in general connectionist systems
por: Dente, J A, et al.
Publicado: (1994) -
Overcoming Catastrophic Interference in Connectionist Networks Using Gram-Schmidt Orthogonalization
por: Srivastava, Vipin, et al.
Publicado: (2014) -
Vulnerabilities of Connectionist AI Applications: Evaluation and Defense
por: Berghoff, Christian, et al.
Publicado: (2020)