Cargando…

A New Phylogenomic Approach For Quantifying Horizontal Gene Transfer Trends in Prokaryotes

It is well established nowadays that among prokaryotes, various families of orthologous genes exhibit conflicting evolutionary history. A prime factor for this conflict is horizontal gene transfer (HGT) - the transfer of genetic material not via vertical descent. Thus, the prevalence of HGT is chall...

Descripción completa

Detalles Bibliográficos
Autores principales: Avni, Eliran, Snir, Sagi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381616/
https://www.ncbi.nlm.nih.gov/pubmed/32709941
http://dx.doi.org/10.1038/s41598-020-62446-5
Descripción
Sumario:It is well established nowadays that among prokaryotes, various families of orthologous genes exhibit conflicting evolutionary history. A prime factor for this conflict is horizontal gene transfer (HGT) - the transfer of genetic material not via vertical descent. Thus, the prevalence of HGT is challenging the meaningfulness of the classical Tree of Life concept. Here we present a comprehensive study of HGT representing the entire prokaryotic world. We mainly rely on a novel analytic approach for analyzing an aggregate of gene histories, by means of the quartet plurality distribution (QPD) that we develop. Through the analysis of real and simulated data, QPD is used to reveal evidence of a barrier against HGT, separating the archaea from the bacteria and making HGT between the two domains, in general, quite rare. In contrast, bacteria’s confined HGT is substantially more frequent than archaea’s. Our approach also reveals that despite intensive HGT, a strong tree-like signal can be extracted, corroborating several previous works. Thus, QPD, which enables one to analytically combine information from an aggregate of gene trees, can be used for understanding patterns and rates of HGT in prokaryotes, as well as for validating or refuting models of horizontal genetic transfers and evolution in general.