Cargando…
Network, clinical and sociodemographic features of cognitive phenotypes in temporal lobe epilepsy
This study explored the taxonomy of cognitive impairment within temporal lobe epilepsy and characterized the sociodemographic, clinical and neurobiological correlates of identified cognitive phenotypes. 111 temporal lobe epilepsy patients and 83 controls (mean ages 33 and 39, 57% and 61% female, res...
Autores principales: | Hermann, Bruce, Conant, Lisa L., Cook, Cole J., Hwang, Gyujoon, Garcia-Ramos, Camille, Dabbs, Kevin, Nair, Veena A., Mathis, Jedidiah, Bonet, Charlene N. Rivera, Allen, Linda, Almane, Dace N., Arkush, Karina, Birn, Rasmus, DeYoe, Edgar A., Felton, Elizabeth, Maganti, Rama, Nencka, Andrew, Raghavan, Manoj, Shah, Umang, Sosa, Veronica N., Struck, Aaron F., Ustine, Candida, Reyes, Anny, Kaestner, Erik, McDonald, Carrie, Prabhakaran, Vivek, Binder, Jeffrey R., Meyerand, Mary E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381697/ https://www.ncbi.nlm.nih.gov/pubmed/32707534 http://dx.doi.org/10.1016/j.nicl.2020.102341 |
Ejemplares similares
-
Brain aging in temporal lobe epilepsy: Chronological, structural, and functional
por: Hwang, Gyujoon, et al.
Publicado: (2020) -
T1−/T2‐weighted ratio reveals no alterations to gray matter myelination in temporal lobe epilepsy
por: Denis, Colin, et al.
Publicado: (2023) -
Late dominance of the right hemisphere during narrative comprehension
por: Youssofzadeh, Vahab, et al.
Publicado: (2022) -
Network phenotypes and their clinical significance in temporal lobe epilepsy using machine learning applications to morphological and functional graph theory metrics
por: Garcia-Ramos, Camille, et al.
Publicado: (2022) -
Classification and Extraction of Resting State Networks Using Healthy and Epilepsy fMRI Data
por: Vergun, Svyatoslav, et al.
Publicado: (2016)