Cargando…

Prospective isolation of human fibroadipogenic progenitors with CD73

Skeletal muscle relies on coordination between myogenic and non-myogenic interstitial cells for homeostasis and for regeneration and response to injury. Fibroadipogenic progenitors (FAPs) have recently been recognized as key modulators of signaling to promote myogenesis following injury. FAPs are al...

Descripción completa

Detalles Bibliográficos
Autores principales: Goloviznina, Natalya A., Xie, Ning, Dandapat, Abhijit, Iaizzo, Paul A., Kyba, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381701/
https://www.ncbi.nlm.nih.gov/pubmed/32728644
http://dx.doi.org/10.1016/j.heliyon.2020.e04503
Descripción
Sumario:Skeletal muscle relies on coordination between myogenic and non-myogenic interstitial cells for homeostasis and for regeneration and response to injury. Fibroadipogenic progenitors (FAPs) have recently been recognized as key modulators of signaling to promote myogenesis following injury. FAPs are also responsible for the fibrosis and fatty replacement of muscle tissue seen in many diseased states. While extensive use of surface markers to purify FAPs has been undertaken in the mouse system, in particular PDGFRA, markers for human FAPs are less well understood. Here, we show that CD73 can be used as a single positive marker to purify FAPs from the lineage-negative (CD45-neg, CD31-neg) fraction of skeletal muscle mononuclear cells. Although CD73 was previously found to be expressed in cultured myogenic cells, we find that this marker is only acquired upon culture and that the CD73+ fraction of human skeletal muscle has no myogenic activity. We show that Lin-neg CD73+ cells from human muscle undergo fat differentiation as well as fibrogenesis when exposed to appropriate activating signals in vitro. This simple single positive marker approach effectively enables isolation of human FAPs from fresh human skeletal muscle biopsies.