Cargando…

Long Non-Coding RNA TP73-AS1 Promotes the Development of Lung Cancer by Targeting the miR-27b-3p/LAPTM4B Axis

PURPOSE: Long non-coding RNA P73 antisense RNA 1T (TP73-AS1) is a newly discovered lncRNA involved in the occurrence and development of several cancers. However, its role in lung cancer has not been well investigated yet. METHODS: The expressions of TP73-AS1, microRNA-27b-3p (miR-27b-3p) and lysosom...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Qingfeng, Xing, Wenqun, Cheng, Jinhua, Yu, Yongkui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381779/
https://www.ncbi.nlm.nih.gov/pubmed/32764992
http://dx.doi.org/10.2147/OTT.S234443
Descripción
Sumario:PURPOSE: Long non-coding RNA P73 antisense RNA 1T (TP73-AS1) is a newly discovered lncRNA involved in the occurrence and development of several cancers. However, its role in lung cancer has not been well investigated yet. METHODS: The expressions of TP73-AS1, microRNA-27b-3p (miR-27b-3p) and lysosomal-associated protein transmembrane-4 Beta (LAPTM4B) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The cell proliferation, apoptosis, migration and invasion were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Annexin V-FITC/PI and transwell assays, respectively. Tumor xenografts were applied to explore the role of TP73-AS1 in vivo. The target relationship was predicted by StarBase v.2.0 or TargetScan and confirmed by luciferase reporter assay. Pearson’s coefficient assay was applied to assess the expression correlation between two groups. Protein expression levels were detected by Western blot. RESULTS: We found that TP73-AS1 was strikingly up-regulated in lung cancer tissues and cells. TP73-AS1 depletion inhibited the growth and metastasis of lung cancer cells in vitro. Furthermore, TP73-AS1 could act as an endogenous sponge by directly binding miR-27b-3p, and a notable inverse correlation between them was also discovered. Importantly, knockdown of miR-27b-3p could reverse the inhibitory effects of TP73-AS1 depletion on the growth and metastasis of lung cancer cells. Besides, LAPTM4B was directly targeted by miR-27b-3p and could be co-regulated by TP73-AS1 and miR-27b-3p in lung cancer cells. Silencing TP73-AS1 hampered tumor growth by regulating miR-27b-3p/LAPTM4B axis in vivo. CONCLUSION: TP73-AS1 promoted the progression of lung cancer through regulating miR-27b-3p/LAPTM4B axis and it might be a potential target for diagnosis and treatment of lung cancer.