Cargando…
Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques
Coronavirus genomic infection-2019 (COVID-19) has been announced as a serious health emergency arising international awareness due to its spread to 201 countries at present. In the month of April of the year 2020, it has certainly taken the pandemic outbreak of approximately 11,16,643 infections con...
Autores principales: | Bhardwaj, Rashmi, Bangia, Aashima |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381942/ https://www.ncbi.nlm.nih.gov/pubmed/32834640 http://dx.doi.org/10.1016/j.chaos.2020.110152 |
Ejemplares similares
-
Hybridized wavelet neuronal learning-based modelling to predict novel COVID-19 effects in India and USA
por: Bhardwaj, Rashmi, et al.
Publicado: (2022) -
Nonlinear dynamics for the spread of pathogenesis of COVID-19 pandemic
por: Sharma, Sunil Kumar, et al.
Publicado: (2021) -
Analysis of heat transmission in convective, radiative and moving rod with thermal conductivity using meta-heuristic-driven soft computing technique
por: Khan, Naveed Ahmad, et al.
Publicado: (2022) -
Data-driven computational methods: parameter and operator estimations
por: Harlim, John
Publicado: (2018) -
Estimation of concrete materials uniaxial compressive strength using soft computing techniques
por: Raju, Matiur Rahman, et al.
Publicado: (2023)