Cargando…
Human Cardiac Fibroblast Number and Activation State Modulate Electromechanical Function of hiPSC-Cardiomyocytes in Engineered Myocardium
Cardiac tissue engineering using hiPSC-derived cardiomyocytes is a promising avenue for cardiovascular regeneration, pharmaceutical drug development, cardiotoxicity evaluation, and disease modeling. Limitations to these applications still exist due in part to the need for more robust structural supp...
Autores principales: | Rupert, Cassady E., Kim, Tae Yun, Choi, Bum-Rak, Coulombe, Kareen L. K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381987/ https://www.ncbi.nlm.nih.gov/pubmed/32724316 http://dx.doi.org/10.1155/2020/9363809 |
Ejemplares similares
-
Practical adoption of state-of-the-art hiPSC-cardiomyocyte differentiation techniques
por: Rupert, Cassady E., et al.
Publicado: (2020) -
A mathematical model of hiPSC cardiomyocytes electromechanics
por: Forouzandehmehr, Mohamadamin, et al.
Publicado: (2021) -
Stimulating Calcium Handling in hiPSC-Derived Engineered Cardiac Tissues Enhances Force Production
por: Minor, Alicia J, et al.
Publicado: (2022) -
One Billion hiPSC-Cardiomyocytes: Upscaling Engineered Cardiac Tissues to Create High Cell Density Therapies for Clinical Translation in Heart Regeneration
por: Dwyer, Kiera D., et al.
Publicado: (2023) -
Action potential metrics and automated data analysis pipeline for cardiotoxicity testing using optically mapped hiPSC-derived 3D cardiac microtissues
por: Soepriatna, Arvin H., et al.
Publicado: (2023)