Cargando…
A molecular mechanism for probabilistic bet hedging and its role in viral latency
Probabilistic bet hedging, a strategy to maximize fitness in unpredictable environments by matching phenotypic variability to environmental variability, is theorized to account for the evolution of various fate-specification decisions, including viral latency. However, the molecular mechanisms under...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382263/ https://www.ncbi.nlm.nih.gov/pubmed/32632017 http://dx.doi.org/10.1073/pnas.1914430117 |
_version_ | 1783563213571358720 |
---|---|
author | Chaturvedi, Sonali Klein, Jonathan Vardi, Noam Bolovan-Fritts, Cynthia Wolf, Marie Du, Kelvin Mlera, Luwanika Calvert, Meredith Moorman, Nathaniel J. Goodrum, Felicia Huang, Bo Weinberger, Leor S. |
author_facet | Chaturvedi, Sonali Klein, Jonathan Vardi, Noam Bolovan-Fritts, Cynthia Wolf, Marie Du, Kelvin Mlera, Luwanika Calvert, Meredith Moorman, Nathaniel J. Goodrum, Felicia Huang, Bo Weinberger, Leor S. |
author_sort | Chaturvedi, Sonali |
collection | PubMed |
description | Probabilistic bet hedging, a strategy to maximize fitness in unpredictable environments by matching phenotypic variability to environmental variability, is theorized to account for the evolution of various fate-specification decisions, including viral latency. However, the molecular mechanisms underlying bet hedging remain unclear. Here, we report that large variability in protein abundance within individual herpesvirus virion particles enables probabilistic bet hedging between viral replication and latency. Superresolution imaging of individual virions of the human herpesvirus cytomegalovirus (CMV) showed that virion-to-virion levels of pp71 tegument protein—the major viral transactivator protein—exhibit extreme variability. This super-Poissonian tegument variability promoted alternate replicative strategies: high virion pp71 levels enhance viral replicative fitness but, strikingly, impede silencing, whereas low virion pp71 levels reduce fitness but promote silencing. Overall, the results indicate that stochastic tegument packaging provides a mechanism enabling probabilistic bet hedging between viral replication and latency. |
format | Online Article Text |
id | pubmed-7382263 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-73822632020-07-30 A molecular mechanism for probabilistic bet hedging and its role in viral latency Chaturvedi, Sonali Klein, Jonathan Vardi, Noam Bolovan-Fritts, Cynthia Wolf, Marie Du, Kelvin Mlera, Luwanika Calvert, Meredith Moorman, Nathaniel J. Goodrum, Felicia Huang, Bo Weinberger, Leor S. Proc Natl Acad Sci U S A Biological Sciences Probabilistic bet hedging, a strategy to maximize fitness in unpredictable environments by matching phenotypic variability to environmental variability, is theorized to account for the evolution of various fate-specification decisions, including viral latency. However, the molecular mechanisms underlying bet hedging remain unclear. Here, we report that large variability in protein abundance within individual herpesvirus virion particles enables probabilistic bet hedging between viral replication and latency. Superresolution imaging of individual virions of the human herpesvirus cytomegalovirus (CMV) showed that virion-to-virion levels of pp71 tegument protein—the major viral transactivator protein—exhibit extreme variability. This super-Poissonian tegument variability promoted alternate replicative strategies: high virion pp71 levels enhance viral replicative fitness but, strikingly, impede silencing, whereas low virion pp71 levels reduce fitness but promote silencing. Overall, the results indicate that stochastic tegument packaging provides a mechanism enabling probabilistic bet hedging between viral replication and latency. National Academy of Sciences 2020-07-21 2020-07-06 /pmc/articles/PMC7382263/ /pubmed/32632017 http://dx.doi.org/10.1073/pnas.1914430117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Chaturvedi, Sonali Klein, Jonathan Vardi, Noam Bolovan-Fritts, Cynthia Wolf, Marie Du, Kelvin Mlera, Luwanika Calvert, Meredith Moorman, Nathaniel J. Goodrum, Felicia Huang, Bo Weinberger, Leor S. A molecular mechanism for probabilistic bet hedging and its role in viral latency |
title | A molecular mechanism for probabilistic bet hedging and its role in viral latency |
title_full | A molecular mechanism for probabilistic bet hedging and its role in viral latency |
title_fullStr | A molecular mechanism for probabilistic bet hedging and its role in viral latency |
title_full_unstemmed | A molecular mechanism for probabilistic bet hedging and its role in viral latency |
title_short | A molecular mechanism for probabilistic bet hedging and its role in viral latency |
title_sort | molecular mechanism for probabilistic bet hedging and its role in viral latency |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382263/ https://www.ncbi.nlm.nih.gov/pubmed/32632017 http://dx.doi.org/10.1073/pnas.1914430117 |
work_keys_str_mv | AT chaturvedisonali amolecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT kleinjonathan amolecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT vardinoam amolecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT bolovanfrittscynthia amolecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT wolfmarie amolecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT dukelvin amolecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT mleraluwanika amolecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT calvertmeredith amolecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT moormannathanielj amolecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT goodrumfelicia amolecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT huangbo amolecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT weinbergerleors amolecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT chaturvedisonali molecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT kleinjonathan molecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT vardinoam molecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT bolovanfrittscynthia molecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT wolfmarie molecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT dukelvin molecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT mleraluwanika molecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT calvertmeredith molecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT moormannathanielj molecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT goodrumfelicia molecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT huangbo molecularmechanismforprobabilisticbethedginganditsroleinvirallatency AT weinbergerleors molecularmechanismforprobabilisticbethedginganditsroleinvirallatency |