Cargando…

Functionally distinct Purkinje cell types show temporal precision in encoding locomotion

Purkinje cells, the principal neurons of cerebellar computations, are believed to comprise a uniform neuronal population of cells, each with similar functional properties. Here, we show an undiscovered heterogeneity of adult zebrafish Purkinje cells, revealing the existence of anatomically and funct...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Weipang, Pedroni, Andrea, Hohendorf, Victoria, Giacomello, Stefania, Hibi, Masahiko, Köster, Reinhard W., Ampatzis, Konstantinos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382291/
https://www.ncbi.nlm.nih.gov/pubmed/32632015
http://dx.doi.org/10.1073/pnas.2005633117
_version_ 1783563217096671232
author Chang, Weipang
Pedroni, Andrea
Hohendorf, Victoria
Giacomello, Stefania
Hibi, Masahiko
Köster, Reinhard W.
Ampatzis, Konstantinos
author_facet Chang, Weipang
Pedroni, Andrea
Hohendorf, Victoria
Giacomello, Stefania
Hibi, Masahiko
Köster, Reinhard W.
Ampatzis, Konstantinos
author_sort Chang, Weipang
collection PubMed
description Purkinje cells, the principal neurons of cerebellar computations, are believed to comprise a uniform neuronal population of cells, each with similar functional properties. Here, we show an undiscovered heterogeneity of adult zebrafish Purkinje cells, revealing the existence of anatomically and functionally distinct cell types. Dual patch-clamp recordings showed that the cerebellar circuit contains all Purkinje cell types that cross-communicate extensively using chemical and electrical synapses. Further activation of spinal central pattern generators (CPGs) revealed unique phase-locked activity from each Purkinje cell type during the locomotor cycle. Thus, we show intricately organized Purkinje cell networks in the adult zebrafish cerebellum that encode the locomotion rhythm differentially, and we suggest that these organizational properties may also apply to other cerebellar functions.
format Online
Article
Text
id pubmed-7382291
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-73822912020-07-30 Functionally distinct Purkinje cell types show temporal precision in encoding locomotion Chang, Weipang Pedroni, Andrea Hohendorf, Victoria Giacomello, Stefania Hibi, Masahiko Köster, Reinhard W. Ampatzis, Konstantinos Proc Natl Acad Sci U S A Biological Sciences Purkinje cells, the principal neurons of cerebellar computations, are believed to comprise a uniform neuronal population of cells, each with similar functional properties. Here, we show an undiscovered heterogeneity of adult zebrafish Purkinje cells, revealing the existence of anatomically and functionally distinct cell types. Dual patch-clamp recordings showed that the cerebellar circuit contains all Purkinje cell types that cross-communicate extensively using chemical and electrical synapses. Further activation of spinal central pattern generators (CPGs) revealed unique phase-locked activity from each Purkinje cell type during the locomotor cycle. Thus, we show intricately organized Purkinje cell networks in the adult zebrafish cerebellum that encode the locomotion rhythm differentially, and we suggest that these organizational properties may also apply to other cerebellar functions. National Academy of Sciences 2020-07-21 2020-07-06 /pmc/articles/PMC7382291/ /pubmed/32632015 http://dx.doi.org/10.1073/pnas.2005633117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Chang, Weipang
Pedroni, Andrea
Hohendorf, Victoria
Giacomello, Stefania
Hibi, Masahiko
Köster, Reinhard W.
Ampatzis, Konstantinos
Functionally distinct Purkinje cell types show temporal precision in encoding locomotion
title Functionally distinct Purkinje cell types show temporal precision in encoding locomotion
title_full Functionally distinct Purkinje cell types show temporal precision in encoding locomotion
title_fullStr Functionally distinct Purkinje cell types show temporal precision in encoding locomotion
title_full_unstemmed Functionally distinct Purkinje cell types show temporal precision in encoding locomotion
title_short Functionally distinct Purkinje cell types show temporal precision in encoding locomotion
title_sort functionally distinct purkinje cell types show temporal precision in encoding locomotion
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382291/
https://www.ncbi.nlm.nih.gov/pubmed/32632015
http://dx.doi.org/10.1073/pnas.2005633117
work_keys_str_mv AT changweipang functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion
AT pedroniandrea functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion
AT hohendorfvictoria functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion
AT giacomellostefania functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion
AT hibimasahiko functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion
AT kosterreinhardw functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion
AT ampatziskonstantinos functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion