Cargando…
Functionally distinct Purkinje cell types show temporal precision in encoding locomotion
Purkinje cells, the principal neurons of cerebellar computations, are believed to comprise a uniform neuronal population of cells, each with similar functional properties. Here, we show an undiscovered heterogeneity of adult zebrafish Purkinje cells, revealing the existence of anatomically and funct...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382291/ https://www.ncbi.nlm.nih.gov/pubmed/32632015 http://dx.doi.org/10.1073/pnas.2005633117 |
_version_ | 1783563217096671232 |
---|---|
author | Chang, Weipang Pedroni, Andrea Hohendorf, Victoria Giacomello, Stefania Hibi, Masahiko Köster, Reinhard W. Ampatzis, Konstantinos |
author_facet | Chang, Weipang Pedroni, Andrea Hohendorf, Victoria Giacomello, Stefania Hibi, Masahiko Köster, Reinhard W. Ampatzis, Konstantinos |
author_sort | Chang, Weipang |
collection | PubMed |
description | Purkinje cells, the principal neurons of cerebellar computations, are believed to comprise a uniform neuronal population of cells, each with similar functional properties. Here, we show an undiscovered heterogeneity of adult zebrafish Purkinje cells, revealing the existence of anatomically and functionally distinct cell types. Dual patch-clamp recordings showed that the cerebellar circuit contains all Purkinje cell types that cross-communicate extensively using chemical and electrical synapses. Further activation of spinal central pattern generators (CPGs) revealed unique phase-locked activity from each Purkinje cell type during the locomotor cycle. Thus, we show intricately organized Purkinje cell networks in the adult zebrafish cerebellum that encode the locomotion rhythm differentially, and we suggest that these organizational properties may also apply to other cerebellar functions. |
format | Online Article Text |
id | pubmed-7382291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-73822912020-07-30 Functionally distinct Purkinje cell types show temporal precision in encoding locomotion Chang, Weipang Pedroni, Andrea Hohendorf, Victoria Giacomello, Stefania Hibi, Masahiko Köster, Reinhard W. Ampatzis, Konstantinos Proc Natl Acad Sci U S A Biological Sciences Purkinje cells, the principal neurons of cerebellar computations, are believed to comprise a uniform neuronal population of cells, each with similar functional properties. Here, we show an undiscovered heterogeneity of adult zebrafish Purkinje cells, revealing the existence of anatomically and functionally distinct cell types. Dual patch-clamp recordings showed that the cerebellar circuit contains all Purkinje cell types that cross-communicate extensively using chemical and electrical synapses. Further activation of spinal central pattern generators (CPGs) revealed unique phase-locked activity from each Purkinje cell type during the locomotor cycle. Thus, we show intricately organized Purkinje cell networks in the adult zebrafish cerebellum that encode the locomotion rhythm differentially, and we suggest that these organizational properties may also apply to other cerebellar functions. National Academy of Sciences 2020-07-21 2020-07-06 /pmc/articles/PMC7382291/ /pubmed/32632015 http://dx.doi.org/10.1073/pnas.2005633117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Chang, Weipang Pedroni, Andrea Hohendorf, Victoria Giacomello, Stefania Hibi, Masahiko Köster, Reinhard W. Ampatzis, Konstantinos Functionally distinct Purkinje cell types show temporal precision in encoding locomotion |
title | Functionally distinct Purkinje cell types show temporal precision in encoding locomotion |
title_full | Functionally distinct Purkinje cell types show temporal precision in encoding locomotion |
title_fullStr | Functionally distinct Purkinje cell types show temporal precision in encoding locomotion |
title_full_unstemmed | Functionally distinct Purkinje cell types show temporal precision in encoding locomotion |
title_short | Functionally distinct Purkinje cell types show temporal precision in encoding locomotion |
title_sort | functionally distinct purkinje cell types show temporal precision in encoding locomotion |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382291/ https://www.ncbi.nlm.nih.gov/pubmed/32632015 http://dx.doi.org/10.1073/pnas.2005633117 |
work_keys_str_mv | AT changweipang functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion AT pedroniandrea functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion AT hohendorfvictoria functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion AT giacomellostefania functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion AT hibimasahiko functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion AT kosterreinhardw functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion AT ampatziskonstantinos functionallydistinctpurkinjecelltypesshowtemporalprecisioninencodinglocomotion |