Cargando…
COVID-19 in Italy and extreme data mining
In this article we want to show the potential of an evolutionary algorithm called Topological Weighted Centroid (TWC). This algorithm can obtain new and relevant information from extremely limited and poor datasets. In a world dominated by the concept of big (fat?) data we want to show that it is po...
Autores principales: | Buscema, Paolo Massimo, Della Torre, Francesca, Breda, Marco, Massini, Giulia, Grossi, Enzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382358/ https://www.ncbi.nlm.nih.gov/pubmed/32834435 http://dx.doi.org/10.1016/j.physa.2020.124991 |
Ejemplares similares
-
Analysis of COVID-19 pandemic in USA, using Topological Weighted Centroid
por: Asadi-Zeydabadi, Masoud, et al.
Publicado: (2021) -
Data Mining of Determinants of Intrauterine Growth Retardation Revisited Using Novel Algorithms Generating Semantic Maps and Prototypical Discriminating Variable Profiles
por: Buscema, Massimo, et al.
Publicado: (2015) -
Artificial adaptive systems using auto contractive maps: theory, applications and extensions
por: Buscema, Paolo Massimo, et al.
Publicado: (2018) -
Artificial Neural Networks for Early Prediction of Mortality in Patients with Non Variceal Upper GI Bleeding (UGIB)
por: Grossi, Enzo, et al.
Publicado: (2008) -
A Novel Mathematical Approach to Define the Genes/SNPs Conferring Risk or Protection in Sporadic Amyotrophic Lateral Sclerosis Based on Auto Contractive Map Neural Networks and Graph Theory
por: Buscema, Massimo, et al.
Publicado: (2012)