Cargando…
ClinicNet: machine learning for personalized clinical order set recommendations
OBJECTIVE: This study assesses whether neural networks trained on electronic health record (EHR) data can anticipate what individual clinical orders and existing institutional order set templates clinicians will use more accurately than existing decision support tools. MATERIALS AND METHODS: We proc...
Autores principales: | Wang, Jonathan X, Sullivan, Delaney K, Wells, Alex C, Chen, Jonathan H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382624/ https://www.ncbi.nlm.nih.gov/pubmed/32734162 http://dx.doi.org/10.1093/jamiaopen/ooaa021 |
Ejemplares similares
-
Predicting inpatient clinical order patterns with probabilistic topic models vs conventional order sets
por: Chen, Jonathan H, et al.
Publicado: (2017) -
OrderRex clinical user testing: a randomized trial of recommender system decision support on simulated cases
por: Kumar, Andre, et al.
Publicado: (2020) -
Use of machine learning to predict clinical decision support compliance, reduce alert burden, and evaluate duplicate laboratory test ordering alerts
por: Baron, Jason M, et al.
Publicado: (2021) -
Developing machine learning models to personalize care levels among emergency room patients for hospital admission
por: Nguyen, Minh, et al.
Publicado: (2021) -
Application of machine learning methods in clinical trials for
precision medicine
por: Wang, Yizhuo, et al.
Publicado: (2022)