Cargando…
Rethinking domain adaptation for machine learning over clinical language
Building clinical natural language processing (NLP) systems that work on widely varying data is an absolute necessity because of the expense of obtaining new training data. While domain adaptation research can have a positive impact on this problem, the most widely studied paradigms do not take into...
Autores principales: | Laparra, Egoitz, Bethard, Steven, Miller, Timothy A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382626/ https://www.ncbi.nlm.nih.gov/pubmed/32734151 http://dx.doi.org/10.1093/jamiaopen/ooaa010 |
Ejemplares similares
-
A Review of Recent Work in Transfer Learning and Domain Adaptation for Natural Language Processing of Electronic Health Records
por: Laparra, Egoitz, et al.
Publicado: (2021) -
Rethinking Opsins
por: Feuda, Roberto, et al.
Publicado: (2022) -
Rethinking 3D-QSAR
por: Cramer, Richard D.
Publicado: (2010) -
Rethinking the INN system for therapeutic antibodies
por: Pottier, Jérémy, et al.
Publicado: (2016) -
Rethinking the pathway to sustainable fire retardants
por: Feng, Jiabing, et al.
Publicado: (2023)