Cargando…
Machine learning for early detection of sepsis: an internal and temporal validation study
OBJECTIVE: Determine if deep learning detects sepsis earlier and more accurately than other models. To evaluate model performance using implementation-oriented metrics that simulate clinical practice. MATERIALS AND METHODS: We trained internally and temporally validated a deep learning model (multi-...
Autores principales: | Bedoya, Armando D, Futoma, Joseph, Clement, Meredith E, Corey, Kristin, Brajer, Nathan, Lin, Anthony, Simons, Morgan G, Gao, Michael, Nichols, Marshall, Balu, Suresh, Heller, Katherine, Sendak, Mark, O’Brien, Cara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382639/ https://www.ncbi.nlm.nih.gov/pubmed/32734166 http://dx.doi.org/10.1093/jamiaopen/ooaa006 |
Ejemplares similares
-
Real-World Integration of a Sepsis Deep Learning Technology Into Routine Clinical Care: Implementation Study
por: Sendak, Mark P, et al.
Publicado: (2020) -
Integrating a Machine Learning System Into Clinical Workflows: Qualitative Study
por: Sandhu, Sahil, et al.
Publicado: (2020) -
Presenting machine learning model information to clinical end users with model facts labels
por: Sendak, Mark P., et al.
Publicado: (2020) -
Machine Learning in Health Care: A Critical Appraisal of Challenges and Opportunities
por: Sendak, Mark, et al.
Publicado: (2019) -
Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study
por: Corey, Kristin M., et al.
Publicado: (2018)