Cargando…

The good, the bad, and the ugly in chemical and biological data for machine learning

Machine learning and artificial intelligence (ML/AI) have become important research tools in molecular medicine and chemistry. Their rise and recent success in drug discovery promises a rapid progression of development pipelines while reshaping how fundamental and clinical research is conducted. By...

Descripción completa

Detalles Bibliográficos
Autor principal: Rodrigues, Tiago
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382642/
https://www.ncbi.nlm.nih.gov/pubmed/33386092
http://dx.doi.org/10.1016/j.ddtec.2020.07.001
Descripción
Sumario:Machine learning and artificial intelligence (ML/AI) have become important research tools in molecular medicine and chemistry. Their rise and recent success in drug discovery promises a rapid progression of development pipelines while reshaping how fundamental and clinical research is conducted. By taking advantage of the ever-growing wealth of publicly available and proprietary data, learning algorithms now provide an attractive means to generate statistically motivated research hypotheses. Hitherto unknown data patterns may guide and prioritize experiments, and augment expert intuition. Therefore, data is a key component in the model building workflow. Herein, I aim to discuss types of chemical and biological data according to their quality and reemphasize general recommendations for their use in ML/AI.