Cargando…
MDU-Net: A Convolutional Network for Clavicle and Rib Segmentation from a Chest Radiograph
Automatic bone segmentation from a chest radiograph is an important and challenging task in medical image analysis. However, a chest radiograph contains numerous artifacts and tissue shadows, such as trachea, blood vessels, and lung veins, which limit the accuracy of traditional segmentation methods...
Autores principales: | Wang, Wenjing, Feng, Hongwei, Bu, Qirong, Cui, Lei, Xie, Yilin, Zhang, Aoqi, Feng, Jun, Zhu, Zhaohui, Chen, Zhongyuanlong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382745/ https://www.ncbi.nlm.nih.gov/pubmed/32724504 http://dx.doi.org/10.1155/2020/2785464 |
Ejemplares similares
-
Deep convolutional neural network for rib fracture recognition on chest radiographs
por: Huang, Shu-Tien, et al.
Publicado: (2023) -
Convolutional neural network for detecting rib fractures on chest radiographs: a feasibility study
por: Wu, Jiangfen, et al.
Publicado: (2023) -
Computer-Aided System for the Detection of Multicategory Pulmonary Tuberculosis in Radiographs
por: Xie, Yilin, et al.
Publicado: (2020) -
Fully Automatic Lung Segmentation and Rib Suppression Methods to Improve Nodule Detection in Chest Radiographs
por: Soleymanpour, Elaheh, et al.
Publicado: (2011) -
Quantitative Measurement Method for Possible Rib Fractures in Chest Radiographs
por: Kim, Jaeil, et al.
Publicado: (2013)