Cargando…
Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction
BACKGROUND: Missing data are common in statistical analyses, and imputation methods based on random forests (RF) are becoming popular for handling missing data especially in biomedical research. Unlike standard imputation approaches, RF-based imputation methods do not assume normality or require spe...
Autores principales: | Hong, Shangzhi, Lynn, Henry S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382855/ https://www.ncbi.nlm.nih.gov/pubmed/32711455 http://dx.doi.org/10.1186/s12874-020-01080-1 |
Ejemplares similares
-
Multiple imputation of missing covariates with non-linear effects and interactions: an evaluation of statistical methods
por: Seaman, Shaun R, et al.
Publicado: (2012) -
Comparison of Random Forest and Parametric Imputation Models for Imputing Missing Data Using MICE: A CALIBER Study
por: Shah, Anoop D., et al.
Publicado: (2014) -
Efficiency of multiple imputation to test for association in the presence of missing data
por: Croiseau, Pascal, et al.
Publicado: (2007) -
Multiple Imputation for General Missing Data Patterns in the Presence of High-dimensional Data
por: Deng, Yi, et al.
Publicado: (2016) -
Variable importance for sustaining macrophyte presence via random forests: data imputation and model settings
por: Van Echelpoel, Wout, et al.
Publicado: (2018)