Cargando…
Electro‐Olefination—A Catalyst Free Stereoconvergent Strategy for the Functionalization of Alkenes
Conventional methods carrying out C(sp(2))−C(sp(2)) bond formations are typically mediated by transition‐metal‐based catalysts. Herein, we conceptualize a complementary avenue to access such bonds by exploiting the potential of electrochemistry in combination with organoboron chemistry. We demonstra...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383514/ https://www.ncbi.nlm.nih.gov/pubmed/32203624 http://dx.doi.org/10.1002/chem.202001394 |
Sumario: | Conventional methods carrying out C(sp(2))−C(sp(2)) bond formations are typically mediated by transition‐metal‐based catalysts. Herein, we conceptualize a complementary avenue to access such bonds by exploiting the potential of electrochemistry in combination with organoboron chemistry. We demonstrate a transition metal catalyst‐free electrocoupling between (hetero)aryls and alkenes through readily available alkenyl‐tri(hetero)aryl borate salts (ATBs) in a stereoconvergent fashion. This unprecedented transformation was investigated theoretically and experimentally and led to a library of functionalized alkenes. The concept was then carried further and applied to the synthesis of the natural product pinosylvin and the derivatization of the steroidal dehydroepiandrosterone (DHEA) scaffold. |
---|