Cargando…
Evaluation of Transport Media and Specimen Transport Conditions for the Detection of SARS-CoV-2 by Use of Real-Time Reverse Transcription-PCR
The global coronavirus (CoV) disease 2019 (COVID-19) pandemic has resulted in a worldwide shortage of viral transport media and raised questions about specimen stability. The objective of this study was to determine the stability of severe acute respiratory syndrome CoV 2 (SARS-CoV-2) RNA in specime...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383526/ https://www.ncbi.nlm.nih.gov/pubmed/32341141 http://dx.doi.org/10.1128/JCM.00708-20 |
Sumario: | The global coronavirus (CoV) disease 2019 (COVID-19) pandemic has resulted in a worldwide shortage of viral transport media and raised questions about specimen stability. The objective of this study was to determine the stability of severe acute respiratory syndrome CoV 2 (SARS-CoV-2) RNA in specimen transport media under various storage conditions. Transport media tested included UTM, UTM-RT, ESwab, M4, and saline (0.9% NaCl). Specimen types tested included nasopharyngeal/oropharyngeal swabs in the above-named transport media, bronchoalveolar lavage (BAL) fluid, and sputum. A high-titer SARS-CoV-2 remnant patient specimen was spiked into pooled SARS-CoV-2 RNA-negative specimen remnants for the various medium types. Aliquots of samples were stored at 18°C to 26°C, 2°C to 8°C, and −10°C to −30°C and then tested at time points up to 14 days. Specimens consistently yielded amplifiable RNA with mean cycle threshold differences of <3 over the various conditions assayed, thus supporting the use and transport of alternative collection media and specimen types under a variety of temperature storage conditions. |
---|